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JACOBI FORMS AND SIEGEL MODULAR FORMS:
RECENT RESULTS AND PROBLEMS

by Winfried KOHNEN

INTRODUCTION

In the present paper we would like to describe some recent developments
how Jacobi forms can be used to study Siegel modular forms of genus 2 and
what problems arise in this way. After a preliminary section on Siegel modular
forms and Jacobi forms (§ 1) which mainly serves to fix some notation, we shall
discuss the so called Maass space in §2. We shall then study relations between
Jacobi forms and spinor zeta functions of Hecke eigenforms of genus 2 (§3)
and finally in §4 will indicate how Jacobi forms can be used to give estimates
for Fourier coefficients of Siegel cusp forms.

Sections 2-4 are divided into two parts: part one describes known results
while part two gives some open problems.

We do not go here into any more intrinsic properties of Jacobi forms (as
e.g. the trace formula or relations to modular forms of integral weight) nor
discuss any representation-theoretic aspects of the theory. For good surveys,
we refer to [33, 36] for the first and to [3] for the second topic.

§1. PRELIMINARIES ON SIEGEL MODULAR FORMS AND JACOBI FORMS

1.1. SIEGEL MODULAR FORMS OF GENUS 2

We write 27, for the Siegel upper half-space of genus 2. The natural
action of Sp,(R) on %) is denoted by

M,Z)y> M<Z> := (AZ+ B) (CZ+ D)-!
vel? BY csorm o
( _(C D)E pR), Ze 2).

We put I'; : = Sp,(Z) and for k € Z denote by M, (I';) the space of Siegel
modular forms of weight k& on T,, i.e. the space of holomorphic func-
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tions F: 2%, — C satisfying F(M<Z>) = det(CZ + D)*F(Z) for all

M = (C D) e I';. Such a function has a Fourier expansion

F(Z) — E a(T)eznitr(TZ)
T=T">0
where T runs over all positive semi-definite half-integral (2, 2)-matrices. We

write S;(I';) for the subspace of cusp forms (require a(7) = 0 for 7T % 0).
For F, G € S,(I';) we denote by

<F,G> = s F(Z)G(Z) (det V), -3dXdY (X =Re(Z), Y =1Im(2))
the Petersson scalar product of F and G.
For basic facts on Siegel modular forms we refer to [12, 17].

1.2. JACOBI FORMS

We write 27 for the complex upper half-plane. We let H(R) be the
Heisenberg group, i.e. the set of triples ((A, n), k) € R? X R with group law
O, w, ) (A ,u)c)=((A+A,p+p’), kK +k +Au"—A'n), and denote
by G’ : = SL,(R) X H(R) the Jacobi group where SL,(R) operates on H(R)
from the right by (A, 1), ¥)M = (A, p)M, x). The group G’ acts on 5% x C

by
a b B at+b z+At+p
(o Y O R e e v

We set T, := SL,(Z), T :=T,x H(Z) and for ke Z and m € N,
denote by Ji . the space of Jacobi forms of weight k and index m on F{, i.e.
the space of holomorphic functions ¢: 77 X C — C satisfying the transforma-
tion formula

c(z+ AT+ p)?
ct+d

d(y o (t,2) = (cTt + d)*exp (Znim ( — A27 — Zkz)) ¢ (1, 2)

b
for all vy = ((a a’) , ((X, w, K)) € I‘{ and having a Fourier expansion
c

¢ (1,2) = ) c(n, r)q"tc’

n,reZ,r2<4mn

where g = e?™, { = e?"z. We write J}"), for the subspace of cusp forms

(require c(n, r) = 0 for r? = 4mn). Note that the coefficients c(n, r) depend
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only on the discriminant D : = r2 — 4mn and the residue class r(mod 2m).
The Petersson scalar product on Ji'5 is normalized by

<p,y> = S d(t, 2V (T, 2) exp (— 4nmy?/v)v*~3dudvdxdy

J
Fl\a’//x C

t=u+iv, 2=x+1y) .

For basic facts about Jacobi forms we refer to [9].

§2. THE MAASS SPACE

2.1. RESULTS

Let F be a Siegel modular form of integral weight k£ on I'; and write the
Fourier expansion of F in the form

o, T Z
(1) F(Z)= ¥ On(t,2)ermim (Z=( ) € %@).

mz0 zZ 7T

Using the injection

a 0 b
5 a b | A U TR '
@  T{~T, ((c d),«x,u),x)) ~ e 0 4 -2
0 0 O 1

a b
where (A, 1) = (A, p) ( a’) , and the transformation formula of F it is
c
easy to see that the functions ¢,, are in J; . The expansion (1) is referred to
as the Fourier-Jacobi expansion of F.
Thus for any m € Ny we obtain a linear map

(3) P Mi(I2) = T m s F> O

Note that py is equal to the Siegel ®-operator.
We shall be interested in the case m = 1. For k odd, p; is the zero map;

in fact, any Jacobi form of odd weight and index one must vanish identically
as is easily seen.

For k even, p; was studied in detail by Maass [28, 29] who showed the
existence of a natural map V: J, ; = M,(I';) such that the composite p; o V
is the identity. More precisely, let ¢ € Ji,; with Fourier coefficients c(n, r)
(n,r e Z;r? < 4n) and for m € N, define
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@ Vad) (1,2):= ) ( Yy, dtle (TE 1)) qe’

2
n,reZ,r:<4mn \ d|(n,r,m) d d

(if m = 0, the term Y. d*~1¢(0, 0) on the right of (4) has to be interpreted
d|0

1
as 5(,(1 — k); note that V;¢ = ¢). Using a more invariant definition

of V, in terms of the action of a set of representatives for
I'\{M e Z2? | detM = m} one checks that V,,¢ € J; , [9, §4]. Put

-, T z
Vo) (Z):= X (Vmd) (1, 2)e2mim (Z = ( ) € %”z) .
mz0 zZ T
We denote by T,(n € N) the usual Hecke operators on M, (I',) resp. Sy(I';)
[12,1V; 1, II]; thus, if p is a prime, T, resp. T, correspond to the two
generators

1, 0
|’ I'; resp. Iy diag(1, p, p?, p)I,
0 plz

of the local Hecke algebra of I, at p. We denote by 7, ,(n € N) the Hecke

cusp

operators on Ji », resp. J, .. [9, §4].

THEOREM 1. (Maass [28, 29], Andrianov [2]). Suppose that k is even.
The map ¢ Vo gives an injection J, 1~ M,(I',) which sends cusp
forms to cusp forms and is compatible with the action of Hecke operators.
If p is a prime, one has T,oV=Vo(T;,+p*2*(p+1) and |
TpooV=Vol(T;,+p 2 p+1)T;,+p*2).

The image of J, ; under V is called the Maass space and will be denoted ‘
by M#(I,). One knows that M#([,) = CEY) @ S}(T;) where E{? is the
Siegel-Eisenstein series of weight k£ on I', and S¥(I,) : = M} (I,) n S I?).
Observe that dimM} (IT,) = dimJy,; grows linearly in k£ while dim M, (%)
grows like k3.

Note that Theorem 1 implies that M#(I',) is stable under all Hecke ?
operators and that it is annihilated by the operator |

(5) Zp:=To—p*2(p+ 1T, — Tpe + p¥*-2,

for every prime p.
Let F € M, (I';) be a non-zero Hecke eigenform and denote by A,(n € N)

its eigenvalues under 7,. If p is a prime, we put

Zr ,(X):=1-hX + (Xf,—xpz—ka“‘)Xz — A, p2K3X3 4 pH-6 X4
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so that Zr, (p~*) (s € C) is the local spinor zeta function of F at p.
We put
Ze(®) := ] Zrp(p~®) (Re(®)>0).
D

One has
Zr(s) = LQRs—2k+4)-1 )Y Mn—  (Re(s)>0).

nzl

If F is an Eisenstein series, then it is well-known that Zg(s) can be
expressed in terms of products of Hecke L-functions of elliptic modular forms.

Suppose that F is cuspidal. Then it was proved in [1, Chap. 3] that Zg(s)
has a meromorphic continuation to C which is holomorphic everywhere if &
is odd and is holomorphic except for a possible simple pole at s = k if k is
even. Moreover, the global function Z¥(s) : = 2n) SI'()I'(s — k + 2) Zg(5)
is (— 1)*-invariant under s 2k — 2 —s.

Let M,,_,(I';) be the space of modular forms of weight 2k — 2 on I;.
Recall that a Hecke eigenform in M, _,(I";) is called normalized if its first
Fourier coefficient is equal to 1.

THEOREM 2 (Saito-Kurokawa conjecture; Andrianov [2], Maass [28, 29],
Zagier [39]). Let k beeven andlet F be a non-zero Hecke eigenform in
My (Ty). Then there is a unique normalized Hecke eigenform f in
My, _,(Ty) such that

Zr(s) = Cs—k+ 1)L(s—k+2)Ls(s)

where L(s) is the Hecke L-function attached to f.

Theorem 2 in particular shows that Zg(s) has a pole at s = k if Fis a
Hecke eigenform in S}(I;). The converse is also true as shown by
Evdokimov [10] and Oda [31], i.e. the function Zg(s) is holomorphic
everywhere if and only if F lies in the orthogonal complement of SETL).

Using Theorem 2 one can show that M#([,) = ;\ ker &, where @, is

defined by (5). Finally let us mention that Theorem 2 implies that a Hecke
eigenform F in S§(I';) does not satisfy the generalized Ramanujan-Petersson
conjecture which would require that A, <, pn*-3/2+¢ (g > ().

The proof of Theorem 1 is based on the fact that the function Vo, by
definition, is symmetric w.r.t. T and 1’ and that T, is generated by the matrix

_ 0 1 0 1 .
diag (( i O) , (1 0)) (which acts on 2%, by interchanging t and t’) and

the image of I'{ under the map (2). For the compatibility statement of ¥ with
Hecke operators one has to check the action of the latter on Fourier coeffi-
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cients. The proof of Theorem 2 is based on a trace formula. We do not give
here any more details. Good expositions can be found in [9] and [39].

2.2. PROBLEMS

1) Since for fixed k the dimension of J ,, grows linearly in m, the map
pm defined by (3) for m >, 0 cannot be surjective. Is there any simple or nice
description of the image of p, or (imp,,|Sc(@>))+? Let us mention here
that one can express the Fourier-Jacobi coefficients of Poincaré series of expo-
nential type on I', which generate S,(I';), as certain infinite linear combina-
tions of Poincaré series on I“{ [22]. Taking scalar products one obtains a
characterization of (im p,, | Sk(I',))+ as the kernel of certain infinite systems
of linear equations. This description, however, does not seem to be very
illuminating (for example, it does not imply in any obvious way that p, is
surjective).

i) A skew-holomorphic Jacobi form of weight k € Z and index m € Ny
on I'! as introduced by Skoruppa is a complex-valued C=-function
d (1, 2) (t € 77, z € C) satisfying the following properties: 1) ¢ is holomorphic
in z and is annihilated by the heat operator 8mimd/8t — 02/8z%; 2) ¢
satisfies the same transformation formula under I'/ as a holomorphic Jacobi
form of weight k£ and index m (cf. §1.2) except that the factor (¢t + d)* has
to be replaced by (¢t + d)*~!|ct + d|; 3) ¢ has a Fourier expansion of type
r> — dmn

d(t,2) = X c(n, r) exp (— T v ) g"¢" (v =1Im()) .

n,reZ,r?>4mn
Note that a skew-holomorphic Jacobi form of even weight and index 1 is
identically zero as is easily seen.

Despite of the importance of skew-holomorphic Jacobi forms as
demonstrated in [34, 36] it is not quite clear so far how they are related to Siegel
modular forms. One difficulty, for example, is that if one starts with a
real-analytic Siegel modular form of genus 2, the coefficients of the partial

: : -, T Z
Fourier expansion of F(Z) w.r.t. e?™® (Where as usual Z = ( )) not
Z 7T

only depend on 7 and z but also on Im(t’), and it is a priori not obvious how
to get rid of the latter variable and to produce ‘‘true’’ Jacobi forms.

Let k£ be an odd integer and denote by M, «_1,2(I'; ) the space of Siegel-
Maass wave forms ‘‘of type (1/2, k — 1/2)’’ as defined in [26], i.e. the space
of real-analytic functions F: 57, = C which satisfy

F(M< Z>) = det(CZ + D)*~!|det(CZ + D) | F(Z)
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for all M = ( . ) e I', and which are annihilated by the matrix diffe-
C D

rential operator

- -0\ o 1 _ 9
Qi k-12:= (Z—-2) ((Z—Z) 52) é_Z+£(Z_Z) 8_2
~ (k-l) (2—2)—6—
2 0Z
o 10
dt 2 9z
where 8_Z= 5 5
Ea—z ot’

and —af is defined analogously (the notation ‘“‘of type (1/2, k —1/2)”’ comes
0Z

from the fact that the factor of automorphy of F' can be written as
det (CZ + D)*-12det(CZ + D)'/> with appropriate choice of the square
root). .

Using certain invariance properties of Qi/2. k-1, under the action of
Sp,(R) one can define Hecke operators T,(neN) on My, x-1,2(IT>) in the
usual way. Let

E®, , 1, (Z):= Y det(CZ+ D) **'|det((CZ+ D)) -1 (k>3)
(C, D)

be the Maass-Siegel-Eisenstein series in M, x—1,2 ) (126527, §18];
summation over all pairs (C, D) of relatively prime symmetric (2, 2)-matrices

inequivalent under left-multiplication by GL,(Z)). Then the following can be
shown:

1) The function E{, ,_,, is a Hecke eigenform whose spinor zeta
function (defined in the same way as above) is equal to {(s—k+ 1)
C(s—k+2)Lg, ,(s) where Ey_, is the normalized Eisenstein series of
weight 2k — 2 on I, (this implies that E?), ,_,,, for all primes p is
annihilated by the Hecke operator @, defined analogously as in (5));

2) if ey k-1/2.m (7,2, Im (")) is the m-th Fourier-Jacobi coefficient of
E®, «_1,, and if for m > 0 one carries out a similar limit process as in
[19, §2, Remark ii) after the proof of Thm. 1], i.e. essentially replaces
- Im(t") by (Im(2))2/Im(x) + & and lets § = o, then one obtains a skew-
holomorphic Eisenstein series of weight & and index m (in fact, finite linear
- combinations of such Eisenstein series if m is not squarefree).
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The following questions therefore are suggestive:

1) if one starts with an arbitrary F € M/, y_,,2(I';), does the above limit
process produce skew-holomorphic Jacobi forms of weight k?

2) define My, ,_,,,(I,) as the subspace of M), «_1,2(I'2) consisting of the
intersection of the kernels of the operators @, for all primes p. Does there
exist a natural map V from skew-holomorphic Jacobi forms of weight k and
index 1 to M}, ,_,,,([;) similar as in the case of holomorphic Jacobi
forms?

Recently, N.-P. Skoruppa [36] has developed a theory of theta lifts from
skew-holomorphic Jacobi forms to automorphic forms on Sp,. It would be
interesting to investigate if his lifts would provide (at least partial) answers to
the above questions.

iii) So far a generalization of the Maass space to higher genus n > 2 has
not been given; in fact, in the general case it does not seem to be quite clear
what one has to look for, except that (the cuspidal part) of a ‘“Maass space’’
eventually should be generated by Hecke eigenforms which do not satisfy a
generalized Ramanujan-Petersson conjecture. Note that there is a partial
negative result by Ziegler [40, 4.2. Thm.] who showed by means of specific
examples that for » > 33 the map which sends a Siegel modular form of weight
16 on I', : = Sp,(Z) to its first Fourier-Jacobi coefficient is not surjective.

On the other hand, there are very interesting numerical calculations for
n = 3 due to Miyawaki [30] which suggest that a Siegel-Hecke eigenform F
of even integral weight & on I'; could be constructed from a pair (f, g) of
elliptic Hecke eigenforms of weights (k;, k,) equal to (k,2k—4) or
(k — 2, 2k — 2) such that the (formal) spinor zeta function of F should be equal
to Li(s—ky/2)Ls(s—ky/2+ 1)Lsg,(s) where L,g,(s) essentially is the
Rankin convolution of f and g ([loc. cit., §4]; note that for n > 2 the analytic
continuation of the spinor zeta function of a holomorphic Hecke eigenform
on I',, is not known).

§3. SPINOR ZETA FUNCTIONS

3.1. RESULTS

Although the Maass space S¥(I';) as discussed in the previous section is
an important subspace of S;(I';) in its own right, one quickly realizes that the
““true’’ Siegel cusp forms on I'; should lie in the orthogonal complement of
S#(T,) (cf. Theorem 2 in §2 and its discussion). Is is therefore even more
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surprising that forms in the Maass space can be used to study forms in
S*T,)* (in fact, spinor zeta functions of Hecke eigenforms in SF(I2)*)-
Thus the importance of the Maass space seems to g0 much beyond that what
is expected from §2.

Let F and G be Siegel cusp forms of integral weight k on I',. Denote by
O and Y, (m > 1) the Fourier-Jacobi coefficients of F and G, respectively
and define a formal Dirichlet series of Rankin-type by
(6) Dr g(s) 1= {(2s—2k+4) 21 < Oy Yp>m~*

m >

(this series was introduced by Skoruppa and the author in [18]).

A variant of the classical Hecke argument shows that
< Om, Um> <p gmk so that Dpg(s) is absolutely convergent for
Re(s) > k£ + 1. We put

D (s) 1= Q)T ()T (s — k +2)Dr,c(5) (Re@®)>k+1).

THEOREM 1 [18]. The function Dg g(s) has a meromorphic conti-

nuation to C which is holomorphic except for a possible simple pole of

residue

(k- 2)!

<F,G>

at s = k. Furthermore, the functional equation
D} 2k —2—35) = Df ;(5)
holds.

THEOREM 2 [18]. Let k be even. Let F e S (I;) be a Hecke
eigenform and G be a function in the Maass space S¥(I';). Then

Drp c(5) = < &1, Y1 > Zp(s) .

The proof of Theorem 1 is based on the Rankin-Selberg method applied
with an Eisenstein series of Klingen-type on Sp,. The proof of Theorem 2
uses Theorem 1 of §2 applied with ¢ a Poincaré series; furthermore, an explicit
formula for the action on Fourier coefficients of the operator V'* adjoint to
V.. w.r.t the Petersson scalar products and the relations due to Andrianov
[1, Chap. 2] between eigenvalues and Fourier coefficients of Hecke eigenforms
play an important role. Let us mention that Theorem 2 could also be deduced
from results of Gritsenko [13, p. 266].

In [38], Yamazaki using the theory of Eisenstein series a la Langlands
studied the analytic properties of generalizations to arbitrary genus »n of the
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series (6). Recently, Krieg [24] gave a more elementary proof of (some of) the
results of [38] using well-known properties of Epstein zeta functions. However,
it is clear from the I'-factors and the type of the functional equations that for
n > 2 there cannot be any direct connection between the series studied in
[24, 38] and spinor zeta functions.
1.2 PROBLEMS

i) Suppose that k is even. If F is a non-zero Hecke eigenform in S, (1),
is ¢; # 0? (This question was already asked in [33].) The answer is positive
for k < 32 as numerical computations due to Skoruppa [35] show. Note that
by Theorem 2 a positive answer gives a new proof for the analytic continuation
and the functional equation of Zg(s).

i1) Let F be a Hecke eigenform in S, (I";). The only critical point of Zz(s)
in Deligne’s sense is s = kK — 1, i.e. the center of symmetry of the functional
equation as is easily checked. Conjecturally therefore Zz(k — 1) should be
equal to the determinant of a ‘‘period matrix’’ times an algebraic number (one
may suppose that k is even since otherwise Zz(k — 1) = 0 as follows from the
sign in the functional equation). To the author’s knowledge, nothing so far
in this direction has been proved. Could Theorem 2 eventually be useful in
this context?

As a side remark, let us mention here that Bocherer [4] motivated by
Waldspurger’s results [37] about the central critical values of quadratic twists
of Hecke L-functions of elliptic Hecke eigenforms, for k even has conjectured
that the central critical value of the twist of Zz(s) by a quadratic Dirichlet
character of conductor D < 0 should be proportional to the square of

Z a(T) where a(T) are the Fourier coefficients of F and the
{T'>0}/~,discT=D

sum is over a set of I';-representatives of positive definite integral binary
quadratic forms 7 of discriminant D. This conjecture is true if F'is in the Maass
space as follows from Theorem 2 in §2 in connection with Waldspurger’s
results, cf. [4]. The conjecture when generalized to level > 1 is also true if the
corresponding form has weight 2 and is the Yoshida lift of two elliptic cusp
forms [6].

iiiy Let F be a cuspidal Hecke eigenform and assume that F is in
S¥@;)+ if k is even. Does the function Dg r(s) have any intrinsic
arithmetical meaning ? (This question was already asked in [33], too; note that
Dy (s) for F as above cannot be proportional to Zg(s) since Dy g(s) has a
pole at s = k while Zz(s) is holomorphic there, cf. §2). For some numerical
computations in this direction in the case k = 20 (the first case where
S#@,)* #{0}) we refer to [23].
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§4. ESTIMATES FOR FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS

4.1. RESULTS

Very recently, it has turned out that Jacobi forms can be used in a rather
simple way to prove growth estimates for Fourier coefficients of Siegel cusp
forms of genus 2. The bounds one obtains in this way, in fact, are somewhat
better than those obtained previously by different methods.

Let F be a Siegel cusp form of integral weight k£ on I', and let a(T') be its
Fourier coefficients. The classical Hecke argument immediately gives

(7) a(T) <5 (det T)*2 .

If one applies a classical theorem of Landau [25,32] to the Rankin-
Dirichlet series
Y laM|*@etT)
{T>0}/GLy(Z)
where the summation extends over a complete set of representatives for the

usual left-action of GL,(Z) on the set of positive definite symmetric half-
integral (2, 2)-matrices 7, one can sharpen (7) and show that

a(T) <. p(det T)K/2-3/32+c (£ 0) .

(Recall that Landau’s theorem roughly speaking asserts that if a Dirichlet series
has a meromorphic continuation to C and satisfies an appropriate functional
equation, then one can deduce a ‘‘good’’ upper bound for the growth of its
coefficients.) For details we refer to [5] and also [11] where the argument is
slightly different; note that the authors prove an estimate for arbitrary
genus 7.

Let us mention the following

THEOREM 1 (Kitaoka [16]). Suppose that k is even. Then
a(T) <. p(det T)*2-4+e  (g> ().

The proof of Theorem 1 uses Poincaré series of exponential type on I',
and estimates for generalized matrix-argument Kloosterman sums and can be
viewed as a generalization to genus 2 of a well-known method how to obtain
‘““good”” bounds for the Fourier coefficients of elliptic cusp forms.

Let us explain now briefly how Jacobi forms can be brought into play (for

full details cf. [20, 21]). Let ¢ € J;? with Fourier coefficients c(n, 7). Then
for £k > 2 one shows that
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|D|k/2—3/4
®) c(n, 1) <,k (m + [ D|12+5)1/2 loll >0
k= 1)/2
where D : = r? — 4mn and the bound in < only depends on ¢ and k.

For the proof one carries over the method of Poincaré series and
Kloosterman sums from the one-variable situation already mentioned above
to the case of the Jacobi group. Note that Poincaré series on I“IJ were studied
in [14, I1, § 2]. The Kloosterman sums that occur in their Fourier coefficients
can be related to Salié sums and therefore can easily be estimated (a similar
phenomenon happens in the case of modular forms of half-integral weight,
cf. [15]). The proof of (8) for D a fundamental discriminant (i.e. the
discriminant of a quadratic field) is given in [20, §1] and for arbitrary D is
given in [21, §1].

On the other hand, if one applies Landau’s theorem to the Dirichlet series
Dr £ (s) discussed in §3, one finds that

(9) H O H <8,ka/2—2/9+e (8 > 0) .

The estimates (8) and (9) now imply the following

THEOREM 2 [20, 21]. One has
(10) a(T) <. p(det T)k/2-13/36+e (g > 0) .
In fact, both sides of (10) are invariant under T~ U’'TU(U € GL,(Z)),

n r/2

r/’2 m
m = min 7T, where min 7 denotes the least positive integer represented by 7.
If we use (8) and (9) together with the fact that min 7" < (det 7)!/? which is
well-known from reduction theory, we obtain (10).

hence if in (10) we write T = ( ) , then we may assume that

4.2. PROBLEMS

i) In [15], Iwaniec using some sophisticated arguments for certain sums
of Salié sums showed that the Fourier coefficients a(n) (n € N) of a cusp
form f of weight k — 1/2 for k > 0 and n squarefree satisfy

a(n) <xoo(n) (log2n)2n*/2-15/28 || £,

where 6,(n) is the number of positive divisors of n and || || is the appro-
priately normalized Petersson norm of f. We wonder if it is possible to prove
an analogous estimate for the Fourier coefficients c(n,r) (D =r?>—4mn a
fundamental discriminant) of a function ¢ € J ,, for k > 2 which also is
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analogous to (8) in the sense that an appropriate power of m appears in the
denominator on the right-hand side. This then eventually would lead to some
improvement of (10) in the case where — 4 det T'is a fundamental discriminant.

ii) For arbitrary genus 7, the best estimate for Fourier coefficients so far
known is due to Bocherer and Raghavan [5] and independently Fomenko [11].
Using Rankin’s method they showed that the Fourier coefficients a(7") (T a
positive definite symmetric half-integral (n, #n)-matrix) of a cusp form F of
integral weight £ on I', satisfy

a(T) < p(det T)¥2-3+e (g > 0)
2

" and [x] = integral part of x (the case
n+

where 6, :=2n+2 + 4

2
n = 2 was discussed above).

It is natural to try to apply the method described in 4.1 also for higher
genus n. For some results in this direction we refer to [7].

+

iif) Let F be a non-zero Hecke eigenform in S, (I',) with eigenvalues 2,
and Fourier coefficients a (7).
If k is even and F is in the Maass space S ¥ (%), then

(11) A < nk-1+e  (g>0)

and this estimate is best possible as follows from Theorem 2 in §2.
On the other hand, if £ is odd or if k is even and F € S F(I%)*, then one

expects that the generalized Ramanujan-Petersson conjecture holds which
predicts that

(12) Ay K nk=372+e (> 0) .

To the author’s knowledge, the best estimate proved so far for the numbers
M. is due to Duke, Howe and Li [8] who showed using representation-
theoretic methods that

(13) A Kgnk-l+e  (g> ()

provided that » is squarefree (in fact, under the assumption n squarefree the
authors proved that A, < 6o(n)2nk-1; it is suggestive that their method, in
fact, gives (13) for all n).

In [1, Chap. 2] Andrianov proved that if Dis a negative fundamental discri-
minant and 7i,..., T, (k= h(D)) denotes a set of I'y-representatives of

positive definite symmetric half-integral (2, 2)-matrices with discriminant D,
then

h h
(14)  Coym(s—k+2) ) (2 a(nTv)n‘S) = (E a(Tv)) Zp(s) .

n>1 v=1
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Thus — roughly speaking — for fixed T the eigenvalues A, are ‘‘propor-
tional’’ to the coefficients a(nT).

Suppose that F is in S} (I';). Using Theorem 1 in §2 and the estimate (8)
with m = 1 one finds that

(15) a(T) <. p(det T)2-172+c (g > 0),

and (11) together with (14) implies that (15), in fact, is best possible.
On the other hand, taking into account (12) and the fact that the Hecke
eigenforms form a basis, one may be led to the following

CONJECTURE 1 [11]. Let F be a cusp form of integral weight k on
I, and suppose that either k is odd or that k is even and F is in the
orthogonal complement of the Maass space. Let a(T) (T a positive definite
symmetric half-integral (2, 2)-matrix) be the Fourier coefficients of F. Then

a(T) <. p(det T)*/2-3/4+e (¢ > 0) .

Concerning norms of Fourier-Jacobi coefficients, one optimistically may
hope for the truth of the following

CONJECTURE 2. Let F be a cusp form of integral weight k on T,
and denote by ¢,, (meN) its Fourier-Jacobi coefficients. Then

(16) | & || <e,pm2=17242 (g > 0).

Note that — in view of Theorem 1 of §3 — (17) would be best possible.

NOTE ADDED IN PROOF

The estimates for the Fourier coefficients of cusp forms of arbitrary genus
n > 2 obtained in [7] improve upon those obtained in [5, 11], cf. 4.2.ii).
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