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116 P. SHASTRI

repeating the above argument we obtain a similar decomposition of
N;: Ny = M, @ N,. This process terminates in a finite number of steps and
we obtain a decomposition M =M, ®@ M, ® ... ® M,, where each M, is
invariant under diag(oy, ..., 0, ... 0.;), 0; being in {w, ®?}.

§5. MAIN THEOREM AND EXAMPLES

In this final section we prove our main results 5.2, 5.3 and give some
examples. We begin with,

5.1. PROPOSITION. Let L be a unimodular Z-lattice of type nD, such
that 2" C L C 2#*". If L admits a perfect isometry, then there exists
an isometry & = diag(d,,...,8;,...,8,) on #*"', where §; is the
isometry on 2#£°* given by left multiplication by & or right multiplication
by E such that L is invariant under §.

Proof. Let o be a perfect isometry of (L, 7r o h). Then o induces
an automorphism of 2#°" and extends naturally to a perfect isometry of
%", In view of ([K], p. 179), n(c) is a perfect isomorphism of FJ,
leaving mn(L) invariant. Therefore by Proposition 4.7 there exists
o = diag(aq, ..., 0, ..., 0,) With o; in {®, ®2} such that (L) is invariant
under a. Let §; denote left multiplication on Z#°* by € = (1 +i+j+ k)/2 if
o; = ® and right multiplication by & = (1 —i—j— k)/2, if o; = @2. Let
8 = diag(d,, ..., 8;, ..., 8,). Since & induces an isometry of Z#°*" which fixes
7" and (8) = o leaves n(L) invariant it follows that & leaves L invariant.

5.2. THEOREM. Let (L,S) be an unimodular Z-lattice of type nD,.
Then, L has a perfect isometry if and only if there exists an ¢ -lattice
(L',S’) such that L =1L".

Proof. Clearly every 2#-lattice admits a perfect isometry (3.2).
Conversely let (L, S) be a Z-lattice of type nD,, which admits a perfect iso-
metry. In view of Proposition 2.1, we can assume that 7" C L ¢ *" and
S = Tr o h. By Proposition 4.7 there exists a subset T" of {1, 2, ..., n} such
that L is invariant under & = (&4, ..., &;, ..., 8,), where §; is left multiplica-
tion by & for i e T and §; is right multiplication by £ for i¢ T. Let
fi "> 2" be defined by f = diag(fi, ..., fi, ..., fo) where f; =1id for
i € T and f; = the involution on 27 for i ¢ T. Then it is easy to check that
f is an isometry of (L, Tr © h) onto (L', S") where, L’ = f(L), and,

S'(x,y) = Y, iy +yix;) + Y Gy + yix)

ieT i¢T
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Clearly L’ is invariant under left multiplication by £. Further, since
PL’ ¢ Pa*" ¢ " c L', it follows that L’ is an Z#~lattice.

Finally, we have the following analogue of Proposition 1.5 for the case of
lattices having components of type Dy.

5.3. THEOREM. Let (L,S), be a positive definite unimodular symmetric
bilinear space over Z, of rank n. Suppose that the set of vectors of
norm 2 form a root system of type

R = L A2k,- 1L QE6 L rEg 1 SD4

1<i<p
with, Y. 2k;+ 6q + 8r + 4s = n. Then the following hold:
1<i<p
(i) The Z-lattice L decomposes as L =1, 1 L, L Ly, where each L;
is unimodular, with asociated root systems of type Ry = 1 Ay, L gEq,

lgigp

R, = rEs, Ry = sDy, respectively.

(i) The Z-lattice L admits a perfect isometry if and only if Ls; s
isometric to the trace form of an 77 -lattice.

(i) If L admits a perfect isometry, then it admits a perfect isometry o
such that the induced map m(c) on ZR*/ZR, corresponds to multipli-
cation by — 1, on the components corresponding to Ay, Eg, and Es,
and to multiplication by ®, on the components corresponding to D.

Proof. (i) Since Eg is unimodular, it is clear that L = L, 1 K, where
L, = rZEg, and K is unimodular with associated root system of type
R; L R;. So to prove (i), it is enough to prove that K decomposes as L; L L;.
This would follow if we show that m(X) decomposes as, n(K) = n(K)
N (ZR}/ZR, ) L n(K) n (ZR} /ZR3).

Let z = (x,y) € n(K), with x in ZR}/ZR, and y in ZR}/ZR;. Since
ZR]/ZR, is a group of exponent 3. [[ (2k;+ 1), and ZR?/ZR; = F7,

I1<igp
it follows that, (0,y) = 3( [] Qk:+ 1))z € n(X). Hence (i) follows.
1<i<p

The results (i) and (iii) follow from (i), (5.2) and ([K], Prop. 4).

5.4. Examples. We conclude this section by giving some examples of

o¢-lattices of type nD, as well as Z-lattices of type nD, which are not

o -lattices. Let {ex}; <r<n. denote the standard Z#“basis of 2#". We
2j+4

consider two cases. For n = 4m, let g;,, = Z e, 0<j<2m - 2, and
k=2j+1



118 P. SHASTRI

2m - 1 2j + 4
Eam= ), €x+1. For n=4m+2, letg,; = Y e,0<j<2m—1,
k=0 k=2j+1
2m - 1 B
and €,y = ), €xs1 + Elsms1 + E€am. Let A =1/1 +i and let L, be
k=0

the Z7"-lattice generated by 527" U {Ag, A&y, ..., A&,/ }. In view of [M-O-S],
n(L) is a maximal totally isotropic subspace of F}, and every vector x € n(L)
has at least four nonzero coordinates. Since Tr © hA(x,x) > 1, for every x
belonging to 7#°*, it follows easily that the set of vectors of norm 2 in L, is
nD,. Clearly L, is unimodular.

For n = 6, this gives the unique unimodular Z-lattice of type 6D, which is
also an 7#*-lattice. In view of [M-O-S], table III, and Proposition 2.3, one can
determine all indecomposable Z-lattices of type nD, for n < 14, which are
##-lattices. The following construction gives an example of a Z-lattice of type
8D,4 which does not admit a perfect isometry. (In particular this shows that
the smallest dimension for which there exists a Z-lattice of type nD, which is
not an s#-lattice is 32). For 1 < k < 8, let p; be equal to & if k£ is even and

2j+4 2j+ 4

let py beequalto 1if kisodd. LetB;,, = Y, pie, Bjza= Y pPisi€

i=2j+1 i=2j+1

4 4
for n<j<2,B;=E.) e;and Bg=E. ) e_;. Let A be the Z-linear

i=1 i=1

subspace of 2°*® spanned by 2% and {ABi}1<i<s. Then m(A) is a
maximal totally isotropic subspace of (F}, Tr o n(h)). It can be easily
checked that A is a Z-lattice of type 8D,. Further n(A) is not invariant
under diag(a;, ..., a;, ..., ag) for any choice of a;in {w, ®?}. Thus in view of
Proposition 4.7, the lattice A does not admit any perfect isometry. The above
construction easily generalizes to give a family of Z-lattices A4, of dimension
16m, m > 2, which are not Z#-lattices.
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