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116 P. SHASTRI

repeating the above argument we obtain a similar decomposition of
Ni : N\ M2® N2. This process terminates in a finite number of steps and

we obtain a decomposition M Mx © M2 © © Mk, where each Mj is

invariant under diag(ai,a,-,... an), a, being in {co, co2}.

§5. Main Theorem and examples

In this final section we prove our main results 5.2, 5.3 and give some

examples. We begin with,

5.1. Proposition. Let L be a unimodular Z-lattice of type nD4 such

that 3fnQLC%f*n. If L admits a perfect isometry, then there exists

an isometry S diag(Si, S,, 8„) on where 8, is the

isometry on given by left multiplication by 2, or right multiplication
by £ such that L is invariant under ô.

Proof. Let o be a perfect isometry of (L, Tr o h). Then a induces

an automorphism of and extends naturally to a perfect isometry of
<^*\ In view of ([K], p. 179), r|(o) is a perfect isomorphism of F4,
leaving t|(jL) invariant. Therefore by Proposition 4.7 there exists

a diag(ai, a,, ...,a„) with a, in {co, co2} such that ti(L) is invariant
under a. Let 8, denote left multiplication on by £, (1 + i+j + k)/2 if
at co and right multiplication by £, (1 - i—j— k)/2, if a, co2. Let
8 diag(8i, 8/, 8„). Since 8 induces an isometry of which fixes

and r|(8) a leaves r|(L) invariant it follows that 8 leaves L invariant.

5.2. Theorem. Let (.L,S) an unimodular Z-lattice of type nD4.
Then, L has a perfect isometry if and only if there exists an -lattice

(L', S') such that L — L'.

Proof Clearly every ^f-lattice admits a perfect isometry (3.2).

Conversely let (L, S) be a Z-lattice of type nD4) which admits a perfect

isometry. In view of Proposition 2.1, we can assume that c L ç and

S Tr o h. By Proposition 4.7 there exists a subset T of {1, 2,..., n] such

that L is invariant under 8 (Si,..., 8/, S„), where 8/ is left multiplication

by £ for i e T and 8/ is right multiplication by £ for / $ T. Let

/: Pf7" -» Pf7" be defined by / diagC/i,...,/, ...,/„) where f id for
/ e T and f the involution on for / $ T. Then it is easy to check that

/ is an isometry of (L, Tr o /*) onto (Z/, Sr) where, 1/ /(L), and,

S'(x,.y) ^ (x,yi + + £ + •

ieT i$T
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Clearly Lr is invariant under left multiplication by Further, since

&>L' c c c Z/, it follows that L' is an ^-lattice.
Finally, we have the following analogue of Proposition 1.5 for the case of

lattices having components of type D4.

5.3. Theorem. Let (L, S), be a positive definite unimodular symmetric

bilinear space over Z, of rank n. Suppose that the set of vectors of
norm 2 form a root system of type

R -L A2ki -L qE6 J_ rE8 _L sD4
i < / < p

with, X! 2/:, + 6q+ 8r + 4s n.Thenthe following hold:
\

(i) The Z-lattice L decomposes as L Lx _L L2 ± L3, where each L,
is unimodular, with asociated root systems of type Ri ± A2k. _L qB6,

1 <P

R2 rE8, R3 sD4i respectively.

(ii) The ï-lattice L admits a perfect isometry if and only if L3 is

isometric to the trace form of an %tf-lattice.

(iii) If L admits a perfect isometry, then it admits a perfect isometry o

such that the induced map t|(g) on ZR#/ZR, corresponds to multiplication

by -1, on the components corresponding to A2kj, E6, and Eg,

and to multiplication by co, on the components corresponding to D4.

Proof, (i) Since Eg is unimodular, it is clear that L L2 _L K, where

L2 — rZEg, and K is unimodular with associated root system of type
Ri ± R3. So to prove (i), it is enough to prove that K decomposes as Li JL L3.
This would follow if we show that r|(if) decomposes as, ri (ZC) rj (ZC)

n (ZRf/ZRj ± r\{K) n (ZRf/ZR3).
Let z (x,y) e *n (AT), with x in ZRf/ZRi and y in ZRf/ZR3. Since

ZRf/ZRi is a group of exponent 3 f[ (2kt+ 1), and ZRf/ZR3 - F,
i ^ < p

it follows that, (0,^) 3( I] (2k, + l))z e t|(AT). Hence (i) follows.
1 ^ ^ p

The results (ii) and (iii) follow from (i), (5.2) and ([K], Prop. 4).

5.4. Examples. We conclude this section by giving some examples of
5f-lattices of type «D4 as well as Z-lattices of type nD4 which are not
^-lattices. Let {ek}x ik(;n denote the standard basis of W". We

2j + 4

consider two cases. For n Am, let s7 +, £ 0 < j -2, and
k 2j + l
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2m - 1 2j + 4

S2 m Yeik+\- For « 4m + 2, let E; + i Y
k 0 k 2j + 1

2m - 1

and + i £ e2A: + i + + i + ^e4m Let X 1/1 + i and let be
k 0

the ^-lattice generated by u {Xsi, Xs2, A,£„/2}. In view of [M-O-S],
ri(L) is a maximal totally isotropic subspace of F4, and every vector x e r|(L)
has at least four nonzero coordinates. Since Tr o h(x9 x) ^ 1, for every x
belonging to it follows easily that the set of vectors of norm 2 in Ln is

«D4. Clearly Ln is unimodular.

For n 6, this gives the unique unimodular Z-lattice of type 6D4 which is

also an ^-lattice. In view of [M-O-S], table III, and Proposition 2.3, one can
determine all indecomposable Z-lattices of type nD4 for n ^ 14, which are

^-lattices. The following construction gives an example of a Z-lattice of type
8D4 which does not admit a perfect isometry. (In particular this shows that
the smallest dimension for which there exists a Z-lattice of type nD4 which is

not an ^-lattice is 32). For 1 ^ k ^ 8, let pk be equal to E, if k is even and
2j + 4 2j + 4

let pk be equal to 1 if k is odd. Let ß; + i Y p/£/, ßy- + 4 Y p/ + iet
i 2j + 1 i 2j + 1

4 4

for n ^ j ^ 2, ß7 E, Y e2i and ßs £ £ p2/ - i • Let A be the Z-linear
/ i / i

subspace of ^*8 spanned by and {^ß/}i ^ < 8 • Then rj(A) is a

maximal totally isotropic subspace of (F8, Tr o tj(/z)). It can be easily
checked that A is a Z-lattice of type 8D4. Further rj(A) is not invariant
under diag(ai, az, a8) for any choice of a/ in {co, co2}. Thus in view of
Proposition 4.7, the lattice A does not admit any perfect isometry. The above

construction easily generalizes to give a family of Z-lattices A4n of dimension

16m, m ^ 2, which are not ^-lattices.
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