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112 P. SHASTRI

Proof. Note that every perfect isometry o of 7% extends naturally to a
perfect isometry of 2#°*, inducing a perfect F,-isomorphism n(c) of
2%/ 2%, n denoting the induced map on the quotient. The proof of the
proposition is complete in view of the following simple lemma.

3.5. LEMMA. An F,-linear isomorphism of ¥, is perfect if and only if it
corresponds to multiplication by ®, where ® denotes a primitive element
of F, over F,.

Proof. An F,-linear isomorphism of F, is perfect if and only if it has no
fixed point other than the trivial element. Since, GL,(F,) = S;, it is easy to
see that every perfect isomorphism of F,, corresponds to multiplication by o,
o being as above.

3.6. PROPOSITION. Let L be a Z-lattice such that #" C L C *".
If L is an Z-lattice, then L has a perfect isometry, which corresponds
to multiplication by ®, on the quotient *"/2¢".

Proof. Multiplication by £ is a perfect isometry of 27" which extends
naturally to a perfect isometry of 5#°*". Clearly the induced map on the
quotient 27°*"/2#°" is multiplication by ®. Since L is an Z#-module, it
preserves L as well. |

In particular,

3.7. COROLLARY. Every Z7-lattice (L,Tr o h) of type nD, has a
perfect isometry.

It is but natural to ask whether every Z-lattice of type nD4 which has a
perfect isometry necessarily admits the structure of an Z7-lattice. We shall
show that this is indeed true. For doing this we need to recall some basic facts
on the automorphisms of the root system nD,.

§4. AUTOMORPHISMS OF THE ROOT SYSTEM nD,; AND PERFECT ISOMETRIES

For any root system R, let 77 (R) denote the Weyl group of R (i.e.
the group generated by the reflections defined by the roots). Then 7 (R)
is a normal subgroup of AutR, which preserves every Z-lattice L such
that ZR ¢ L ¢ ZR#. We thus get a natural map n:AutR/ 7 (R)
— Autz(ZR #/ZR). In view of ([H], p. 72; [C-S], p. 432) this is an injection.
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An element o in Aut(R)/# (R) preserves L if and only if n(c) preserves the
corresponding subgroup n(L) of ZR #*/ZR. If R = D, AutR = 7" (R) PS< Ss,

where, X denotes the semi direct product and S; is the automorphism group
N

of the associated Dynkin diagram:

Consequently, for R = nDy, AutR/% (R)=S; X S, = (GL,(Fy))" X Sy.
Thus the elements of AutR/ % (R) are ‘““monomial matrices’’ where each row
and each column consists of exactly one element of GL,(F;). It acts naturally
on (ZD})"/ZD". In view of the identification of ZD;/ZDy = J°*/ 2%, we
have the following proposition.

4.1. PROPOSITION.
(a) Aut (Y W () = S3 DS< S, = (GLZ(FZ))" DS< S,.

(b) If U denotes the group of units of ¢, then U is a subgroup of
Aut ¢ and U/(# ()N U) ={1l,0,0%}, where Fy(0) = F,.

(c) The conjugation in ¢ belongs to the Weyl group W(H).

Proof. (a) This statement is an immediate consequence of the identi-
fication ZD, = 7.

(b) By (@), Aut 22/ % (2¢) = S; = GL,(F,). Since n(U) = {1, o, ®?}, (b)
follows.
(c) The conjugation in 57 is a product of reflections defined by 7,/ and k.

We now consider the perfect isomorphisms of (2#°*")/ 2" arising out of
Aut (Z7m)/  (7°"). We begin by fixing the following notation:

Let V=F;=X, L X, 1 ..X, with respect to the standard hermitian
form on V, where X;=F,=F, ®F, ={0,1,w,w?}. Let G denote the
group of all » X n monomial matrices with entries in M, (F;), where each row
and each column consists of exactly one element of GL,(F,). Note that every
element of G can be uniquely expressed as a . T, where a is the diagonal matrix

diag(a, ..., 04, ..., 0,), With a; in GL,(F,) and 1 is an n X n permutation
matrix. We have,
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4.2. LEMMA. Let o belonging to G be perfect and let X = X; for
some i. Let m be the smallest positive integer for which ¢™ maps X
onto itself. Then o™/X is perfect.

Proof. The idea of the proof is similar to ([K], Prop. 2). We show
that (1 —6™)/X is surjective. Let M= )  o/(X). Then o leaves M

0gis<m—-1
invariant. Therefore ¢ is a perfect isomorphism of M. Hence (1 — 6)/M:

M — M is surjective. Let x be an element of X. Since, (x,0,...,0)
belongs to M, there exists an element y in M such that (1 - o) (»)
=(x0,...,0). Let y = (¥, Y1, .-.» Ym—1), Where y; belongs to ¢/(X). Then,

1-0)())=(Po=06Im-1), 1=6(¥0) s Ym-1—6(Im-2)) -

Hence, yo — 6(¥m-1) = X, ¥1 = 6(¥0)s ---s Ym—1 = 6(¥m-2). Further, 6 (ym_1)
=62(Ym-2) = ... =06"(¥). Thus (1 -06")(y) = x. This implies that
(1 —o™)/X is surjective.

4.3. COROLLARY. Let o be an element of G which is perfect. Suppose
that c=0a.T, where o = diag(o;, ..., 0y ..., 0y), o; € GL,(F,),
T=717,.%7...%T, and 71; are disjoint cyclic permutations of length n;.
Let T; denote the set of indices belonging to the permutation 7t;. Then
(o)"/X; is perfect for every j belonging to T;.

Proof. Note that for every j belonging to T;, n; is the smallest positive
integer such that (o)™ maps X; onto itself.

4.4. COROLLARY. If o is as above, then (o0)"i/X; corresponds to
multiplication by ® or ®?, for every j belonging to T;.

Proof. Follows from Corollary 4.3, and Lemma 3.5.

4.5. COROLLARY. If o is as above, and X = Y, X;, then (c)"/X®

jeT;
is the matrix diag(a, ..., 0;,...a,), where o; belongs to {®,®?}.

Proof. Clear from Corollary 4.4.

4.6. PROPOSITION. Let o be an element of G which is perfect and let
c=0a.1T, where o and 7t are as in Corollary 4.4. Then there exists an
integer | > 1, such that o' is perfect and o' = B.1', where P is the
matrix diag By, ..., Bj, ..., Bn), with B, in GL,(¥,) and 1’ is a pro-
duct of disjoint cyclic permutations 7; of length 3%.
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Proof. Let 1 =1,.71,...1,, where T; are disjoint cyclic permutations of
length n; = 3% ./, with (3,/;) = 1. Let / denote the least common multiple
of the /;. We show that o’ is perfect. By Corollary 4.5, 6"/X; is multiplica-
tion by @ or w2 for every j belonging to 7;. This implies that (c)"/'i/X;
corresponds to multiplication by ® or w? for every such j, since (///;,3) = 1
and ® is an element of order 3. Hence, (¢/)3'/X® is the matrix
diag(ay, ..., o;, ... 0,,,) where o, belongs to {®, w?}. Clearly this implies that
c!/ X" has no nontrivial fixed point. Since T; are disjoint, it follows that ¢’
has no nontrivial fixed point and hence o/ is perfect. Obviously 6/ has the
required property and the proposition follows.

Now, let M be an F,-linear subspace of V, which is invariant under a per-
fect isomorphism o belonging to G. By the previous proposition, we can
assume, by replacing o by o™, that M is invariant under 6 = o . T, where a
is as in Corollary 4.4 and T = 1,.7,... T,, T; being cyclic permutations of
length 3%,

4.7. PROPOSITION. If M is an F,-linear subspace of V which has a
perfect isomorphism o belonging to G, then M is invariant under the
action of a diagonal matrix, diag(a,,...,q;,...,0,) Wwhere each «;
belongs to {w, ®?}.

Proof. By replacing ¢ by a suitable power we may assume that

c = diag(Bs, ..., Bis .o, B) TiT2 o T,

where B; belongs to GL,(F,) for every i and t; are disjoint cyclic permutations
of length 3%, Further, since disjoint cycles commute we may assume that the
length of 7; is 3% for 1 < i <s and the length of t; is less than 3% for
s<igr. Let T={ie{l,2,...,n}|i occurs in the permutation 1,7, ... Ts}.
Let Mi=Mn )} X;and Ny =Mn Y X;. We claim that M = M, @ N,

ieT ieT
and that M, is invariant under diag(a,, ..., a;, ..., a,), where each o; belongs
to {®, w?}. Let (x,y) e M, where xe 1 X;, ye L X;. Since
ieT i¢T
o = diag(ay, ..., 0, ..., Q) ,

where o; belongs to {w, w2} for i e T and a; = 1 for i ¢ T, it follows that,
x,y) + o¥(x,¥) + (6¥)2(x, y) = (0, y) belongs to M. Hence (x, 0) belongs
to M as well. Thus M =M, @ N,. Clearly M, is invariant under
diag(ay, ..., a;, ..., 0,), o; being in {w,®2}. Since 6/N; is perfect, by
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repeating the above argument we obtain a similar decomposition of
N;: Ny = M, @ N,. This process terminates in a finite number of steps and
we obtain a decomposition M =M, ®@ M, ® ... ® M,, where each M, is
invariant under diag(oy, ..., 0, ... 0.;), 0; being in {w, ®?}.

§5. MAIN THEOREM AND EXAMPLES

In this final section we prove our main results 5.2, 5.3 and give some
examples. We begin with,

5.1. PROPOSITION. Let L be a unimodular Z-lattice of type nD, such
that 2" C L C 2#*". If L admits a perfect isometry, then there exists
an isometry & = diag(d,,...,8;,...,8,) on #*"', where §; is the
isometry on 2#£°* given by left multiplication by & or right multiplication
by E such that L is invariant under §.

Proof. Let o be a perfect isometry of (L, 7r o h). Then o induces
an automorphism of 2#°" and extends naturally to a perfect isometry of
%", In view of ([K], p. 179), n(c) is a perfect isomorphism of FJ,
leaving mn(L) invariant. Therefore by Proposition 4.7 there exists
o = diag(aq, ..., 0, ..., 0,) With o; in {®, ®2} such that (L) is invariant
under a. Let §; denote left multiplication on Z#°* by € = (1 +i+j+ k)/2 if
o; = ® and right multiplication by & = (1 —i—j— k)/2, if o; = @2. Let
8 = diag(d,, ..., 8;, ..., 8,). Since & induces an isometry of Z#°*" which fixes
7" and (8) = o leaves n(L) invariant it follows that & leaves L invariant.

5.2. THEOREM. Let (L,S) be an unimodular Z-lattice of type nD,.
Then, L has a perfect isometry if and only if there exists an ¢ -lattice
(L',S’) such that L =1L".

Proof. Clearly every 2#-lattice admits a perfect isometry (3.2).
Conversely let (L, S) be a Z-lattice of type nD,, which admits a perfect iso-
metry. In view of Proposition 2.1, we can assume that 7" C L ¢ *" and
S = Tr o h. By Proposition 4.7 there exists a subset T" of {1, 2, ..., n} such
that L is invariant under & = (&4, ..., &;, ..., 8,), where §; is left multiplica-
tion by & for i e T and §; is right multiplication by £ for i¢ T. Let
fi "> 2" be defined by f = diag(fi, ..., fi, ..., fo) where f; =1id for
i € T and f; = the involution on 27 for i ¢ T. Then it is easy to check that
f is an isometry of (L, Tr © h) onto (L', S") where, L’ = f(L), and,

S'(x,y) = Y, iy +yix;) + Y Gy + yix)

ieT i¢T
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