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108 P. SHASTRI

1.3. PROPOSITION. A unimodular symmetric bilinear form S admits a
decomposition S = B + B’ with B wunimodular if and only if S has a
perfect isometry.

Thus, Question 1.1 reduces to the following.

1.4. QUESTION. Given a unimodular symmetric bilinear form S, does there
exist a perfect isometry of S?

Note that if S is positive definite and even, then the rank of S is a multiple
of 8. M. Kervaire gives a complete answer to Question 1.4, for positive definite
forms of rank less than or equal to 24. For forms of arbitrary rank, he proves
the following partial result, using the theory of the associated root systems.

Let R ={xe L|S(x,x) =2}. Suppose that R is a root system in R”"
of rank n (= rank L). Then the irreducible components of R are of type A,
D, or E; and we have:

1.5. THEOREM ([K], Cor. 3, Prop. 4).

(@) If R has an irreducible component of type Az_1, E7 or Dy.a,
with k > 1, then there does not exist any perfect isometry of (L, S).

(by If R= 1 Ay, L qE¢ L rEs, then there exists a perfect isometry

I1<igyp
of L, inducing a perfect isomorphism of the abelian group ZR*/ZR,
which corresponds to multiplication by — 1, where ZR?* denotes the

dual of the lattice ZR.

Note that the case of R having an irreducible component of type D, is not
covered by this theorem. In this paper we give an analogue of (b) for this case.
In fact, we first consider the case in which R is of type nD,. In this case, we
show (Th. 5.2) that (L, S) admits a perfect isometry if and only if the isometry
class of (L, S) contains a symmetric bilinear space (L', S") of some hermitian
space over the Hurwitz quaternionic integers. The analogue of Proposition 1.5
follows from this immediately (Theorem 5.3). In the final section we also give
some examples.

§2. THE ROOT SYSTEM D, AND THE HURWITZ QUATERNIONIC INTEGERS

The fact that the root lattice ZD, can be identified with the lattice of
Hurwitz quaternionic integers was long recognized: see for instance ([C-S]).
However we give here a direct proof of this fact and recall some arithmetical
facts about these quaternionic integers, which are needed in the sequel.
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We first fix the following terminology. By a Z-lattice we mean a pair (L, b),
where L is a finitely generated free Z-module and b: L X L = Z a positive
definite, even, symmetric bilinear form. If the set {xelL | b(x, x) = 2} forms
a root system of type nD, where the rank of L equals 4n, then we call it a
Z-lattice of type nD,. If L is contained in R™ and b is induced by the
Euclidean inner product on R™, we call it a Euclidean Z-lattice. The symbol
D, will always mean the root system in R* with the Euclidean inner product,
corresponding to the Dynkin diagram

@)

O

e
\O

Let «/=Q® Qi® Qj ® Qk denote the quaternion division algebra
over Q, defined by

2=jr=k*=-1, ij=—-ji=k.
Let h: o/" X o/"— of be the hermitian form defined by

h((xl --'xn): (yla ’yn)) = Z}:xi)_}i )

where bar denotes the conjugation in 7. If Tr: o/ — Q denotes the trace map
Tr(x) = x + x, then Tr o h is a positive definite symmetric bilinear form
over Q. Let 2# denote the Hurwitz quaternionic integers in ./ i.e.
d={(a+bi+cj+dk)/2|a,b, c,d e Z, with the same parity}. Then, o7 is
a maximal order in «/ and (57, Tr o h) is a Z-lattice. It is trivial to verify
that &, = 1 +i+j+k)/2, 8 =0+i+j—k)/2,E35=(0+i—j+ k)/2, and
Es=0—-i+j+k)/2 form a Z-basis of 7. Let 77* denote the dual
of 27 in /. Then we have

2.1. PROPOSITION.

(@) The Z-lattice (7%, Tr © h) is isometric to the Euclidean lattice 7D.,.
(b) The group of units of 2% forms a root system isomorphic to Dy.

(c) Every Z-lattice of type nD, is isometric to a Z-lattice L such that
s°" C L C %, where the bilinear form on L is induced by Tr o h.

Proof. Let {g;} denote the standard orthonormal basis in R4, and let

b]
Ay =& — &, Oy =€) — &, O3 = €3 — €4, Oy = €3 + &4. Then {(11, a,, dj, (14}
is a basis for the root system D,. The associated Dynkin diagram is given by
0

P

O

al\o
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If b denotes the Euclidean inner product on R*, then, t: 22— ZD,
defined by 1) =0;, 1(€,)=—0a;, 2<i<4, is an isometry of
(o, Tr o h) onto (ZD,, b). This proves (a). We note that an element x
in 27 is a unit if and only if 7r o A(x) = 2. Hence (b) follows from the
above isometry. Since Tr © £ is nondegenerate, the dual of 77 in & is the

same as the dual of 2727 in &/ ® R = R*. From (a) it follows that Z#* is
o

isometric to (ZD,)*. Thus (c) follows from the fact that every Z-lattice of
type nD, is isometric to a Euclidean Z-lattice L such that (ZD,)" C L
C (ZD})".

Let us now recall a few arithmetical facts about the Hurwitz quaternionic
integers, details of which can be found in [R]. The dual Z77°* is a two-sided
full 2#-module in .7 i.e. an Z7-submodule of .2/ which contains a Q-basis
of .«Z. The set of all two-sided full Z#-submodules of .7 is a free abelian group
with the set of all maximal ideals of 27 as basis. Further the inverse of 7 *
is a maximal ideal in 27, In fact, (ZF*) 1= & Z=(1+1i), 7= (2),
P = P, and #/P=TF, . We have,

2.2. PROPOSITION.

(a) The quotient 257*/ 27 has the natural structure of a vector space of
dimension one over F,.

(b) The hermitian form h induces a hermitian form w(h) on J°*/ 27,
with values in 2£°*%/2#*, which is isometric to the standard hermitian
form on F,.

Proof. (a) This follows from the fact that, 27°* is an Z7-module of rank
one and Zo* = H* P = 2.

(b) This follows from the commutativity of the diagram:

K| HOX GO A~ GO
! l
KPP X )P > P

where the vertical arrows are the isomorphisms induced by multiplication by
1 + i and 2 respectively and the horizontal arrows are the respective hermitian
forms.

From now on, we shall identify 2#°*/2# with F,, as a one dimensional
vector space for the choice of the basis 1/1 + i
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2.3. PROPOSITION.
(@ Let 2#"C L C s*" be a Z-module. Then (L,Tr o h) is integral
if and only if n(L) is a totally isotropic subspace of the symmetric bilinear
space (Fi, Tr o n(h)), where n(h) is the standard hermitian form
on Fj.
(b) The Z-lattice (L, Tr o h) is unimodular if and only if n(L) is a
maximal totally isotropic subspace of (Fj, Tr o n(h)).

Proof. (a) This follows easily from 2.2.

(b) This follows from (a), since L is unimodular if and only if L is maximal
integral.

§3. PERFECT ISOMETRIES OF Z#-LATTICES

In this section we show that certain special class of Z-lattices admit perfect
isometries. We begin with the following definition.

3.1. Definition. A Z-lattice (L,b) is called an Z#-lattice if L is an
o7-module and & = Tr o h for some hermitian form A.
3.2. PROPOSITION. Every 7#-lattice has a perfect isometry.

Proof. Let (L, Tr o h) be an lattice. Let 6: L — L denote left (or
right) multiplication by & where £ is one of the units (1 + i + j + k)/2. Then,

Tr o h(c(x), 6(»)) = Tr o h(Ex, £y) = Tr(Eh(x, y)E)
= Eh(x, )&+ ER(x, »)E = E(h(x, ¥) + A(x, ) & = EE(h(x, ¥) + h(x, )
= h(x,y) + h(x,y) = Tr o h(x, ) .

Therefore o is an isometry. Since the minimal polynomial of o is x2 — x + 1,
det(l — o) = 1 and hence ¢ is perfect.

As a special case of this we have:
3.3. COROLLARY. The Z-lattice (5#,Tro h) has a perfect isometry.

3.4. PROPOSITION. Every perfect isometry of (2%, Tro h) induces a
perfect ¥y-isomorphism of 2*/2#=7¥,, which corresponds to multi-
plication by ®, where F,(®) =F,.
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