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HURWITZ QUATERNIONIC INTEGERS

AND SEIFERT FORMS

by Parvati Shastri

Dedicated to the memory of late Prof. K. G. Ramanathan

§ 1. Introduction

The aim of this paper is to answer a question which arose from the work

of Kervaire [K] on Seifert forms.

A Seifert form B on a finitely generated free Z-module L, is a bilinear
form

B:Lx L^Z
such that B + B' is unimodular, i.e. det (B + B') ± 1, where B' denotes the

transpose of B. Such forms occur in knot theory. The Seifert form associated

with the fibres of an odd dimensional fibred knot is unimodular. Motivated
by this, M. Kervaire considers in [K] the following question:

1.1. Question. Let S be a unimodular symmetric bilinear form on a

finitely generated free Z-module L. Does there exist a unimodular form

B : L X L —* Z

such that S B + B'l
If S admits such a decomposition, then obviously B is not symmetric

and S is even. If S is indefinite, the answer to the above question is easily shown
to be in the affirmative if and only if the rank of L exceeds 2 ([K], p. 176).
To answer the question in the positive definite case, Kervaire introduces the
notion of a perfect isometry.

1.2. Definition. Let R be a commutative ring and M a finitely generated
i?-module. An iMinear isomorphism x of M is called perfect if 1 - x is
invertible.

He proves:
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1.3. Proposition. A unimodular symmetric bilinear form S admits a

decomposition S B + B' with B unimodular if and only if S has a

perfect isometry.

Thus, Question 1.1 reduces to the following.

1.4. Question. Given a unimodular symmetric bilinear form S, does there
exist a perfect isometry of SI

Note that if S is positive definite and even, then the rank of S is a multiple
of 8. M. Kervaire gives a complete answer to Question 1.4, for positive definite
forms of rank less than or equal to 24. For forms of arbitrary rank, he proves
the following partial result, using the theory of the associated root systems.

Let R {x e L \ S(x,x) 2}. Suppose that R is a root system in R"
of rank n rankL). Then the irreducible components of R are of type A,
D, or E; and we have:

1.5. Theorem ([K], Cor. 3, Prop. 4).

(a) If R has an irreducible component of type A2yt-i> E7 or Dk+4,
with k ^ 1, then there does not exist any perfect isometry of (L, S).

(b) If R _L A2ki -L #E6 _L rE8, then there exists a perfect isometry

of L, inducing a perfect isomorphism of the abelian group ZR#/ZR,
which corresponds to multiplication by - 1, where ZR# denotes the

dual of the lattice ZR.

Note that the case of R having an irreducible component of type D4 is not
covered by this theorem. In this paper we give an analogue of (b) for this case.

In fact, we first consider the case in which R is of type nDA. In this case, we

show (Th. 5.2) that (L, S) admits a perfect isometry if and only if the isometry
class of (L, S) contains a symmetric bilinear space (2/, S') of some hermitian

space over the Hurwitz quaternionic integers. The analogue of Proposition 1.5

follows from this immediately (Theorem 5.3). In the final section we also give

some examples.

§2. The root system D4 and the Hurwitz quaternionic integers

The fact that the root lattice ZD4 can be identified with the lattice of
Hurwitz quaternionic integers was long recognized: see for instance ([C-S]).
However we give here a direct proof of this fact and recall some arithmetical
facts about these quaternionic integers, which are needed in the sequel.
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