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HURWITZ QUATERNIONIC INTEGERS
AND SEIFERT FORMS

by Parvati SHASTRI

Dedicated to the memory of late Prof. K. G. Ramanathan

§1. INTRODUCTION

The aim of this paper is to answer a question which arose from the work
of Kervaire [K] on Seifert forms.

A Seifert form B on a finitely generated free Z-module L, is a bilinear
form

B:L xXxL—1Z

such that B + B’ is unimodular, i.e. det (B + B") = + 1, where B’ denotes the
transpose of B. Such forms occur in knot theory. The Seifert form associated
with the fibres of an odd dimensional fibred knot is unimodular. Motivated
by this, M. Kervaire considers in [K] the following question:

1.1. QUESTION. Let S be a unimodular symmetric bilinear form on a
finitely generated free Z-module L. Does there exist a unimodular form

B:LxXL—-1Z,

such that S = B + B"?

If § admits such a decomposition, then obviously B is not symmetric
and S is even. If Sis indefinite, the answer to the above question is easily shown
to be in the affirmative if and only if the rank of L exceeds 2 ([K], p. 176).

To answer the question in the positive definite case, Kervaire introduces the
notion of a perfect isometry.

1.2. Definition. Let R be a commutative ring and M a finitely generated
R-module. An R-linear isomorphism T of M is called perfect if 1 — 1 is
invertible.

He proves:
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1.3. PROPOSITION. A unimodular symmetric bilinear form S admits a
decomposition S = B + B’ with B wunimodular if and only if S has a
perfect isometry.

Thus, Question 1.1 reduces to the following.

1.4. QUESTION. Given a unimodular symmetric bilinear form S, does there
exist a perfect isometry of S?

Note that if S is positive definite and even, then the rank of S is a multiple
of 8. M. Kervaire gives a complete answer to Question 1.4, for positive definite
forms of rank less than or equal to 24. For forms of arbitrary rank, he proves
the following partial result, using the theory of the associated root systems.

Let R ={xe L|S(x,x) =2}. Suppose that R is a root system in R”"
of rank n (= rank L). Then the irreducible components of R are of type A,
D, or E; and we have:

1.5. THEOREM ([K], Cor. 3, Prop. 4).

(@) If R has an irreducible component of type Az_1, E7 or Dy.a,
with k > 1, then there does not exist any perfect isometry of (L, S).

(by If R= 1 Ay, L qE¢ L rEs, then there exists a perfect isometry

I1<igyp
of L, inducing a perfect isomorphism of the abelian group ZR*/ZR,
which corresponds to multiplication by — 1, where ZR?* denotes the

dual of the lattice ZR.

Note that the case of R having an irreducible component of type D, is not
covered by this theorem. In this paper we give an analogue of (b) for this case.
In fact, we first consider the case in which R is of type nD,. In this case, we
show (Th. 5.2) that (L, S) admits a perfect isometry if and only if the isometry
class of (L, S) contains a symmetric bilinear space (L', S") of some hermitian
space over the Hurwitz quaternionic integers. The analogue of Proposition 1.5
follows from this immediately (Theorem 5.3). In the final section we also give
some examples.

§2. THE ROOT SYSTEM D, AND THE HURWITZ QUATERNIONIC INTEGERS

The fact that the root lattice ZD, can be identified with the lattice of
Hurwitz quaternionic integers was long recognized: see for instance ([C-S]).
However we give here a direct proof of this fact and recall some arithmetical
facts about these quaternionic integers, which are needed in the sequel.
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We first fix the following terminology. By a Z-lattice we mean a pair (L, b),
where L is a finitely generated free Z-module and b: L X L = Z a positive
definite, even, symmetric bilinear form. If the set {xelL | b(x, x) = 2} forms
a root system of type nD, where the rank of L equals 4n, then we call it a
Z-lattice of type nD,. If L is contained in R™ and b is induced by the
Euclidean inner product on R™, we call it a Euclidean Z-lattice. The symbol
D, will always mean the root system in R* with the Euclidean inner product,
corresponding to the Dynkin diagram

@)

O

e
\O

Let «/=Q® Qi® Qj ® Qk denote the quaternion division algebra
over Q, defined by

2=jr=k*=-1, ij=—-ji=k.
Let h: o/" X o/"— of be the hermitian form defined by

h((xl --'xn): (yla ’yn)) = Z}:xi)_}i )

where bar denotes the conjugation in 7. If Tr: o/ — Q denotes the trace map
Tr(x) = x + x, then Tr o h is a positive definite symmetric bilinear form
over Q. Let 2# denote the Hurwitz quaternionic integers in ./ i.e.
d={(a+bi+cj+dk)/2|a,b, c,d e Z, with the same parity}. Then, o7 is
a maximal order in «/ and (57, Tr o h) is a Z-lattice. It is trivial to verify
that &, = 1 +i+j+k)/2, 8 =0+i+j—k)/2,E35=(0+i—j+ k)/2, and
Es=0—-i+j+k)/2 form a Z-basis of 7. Let 77* denote the dual
of 27 in /. Then we have

2.1. PROPOSITION.

(@) The Z-lattice (7%, Tr © h) is isometric to the Euclidean lattice 7D.,.
(b) The group of units of 2% forms a root system isomorphic to Dy.

(c) Every Z-lattice of type nD, is isometric to a Z-lattice L such that
s°" C L C %, where the bilinear form on L is induced by Tr o h.

Proof. Let {g;} denote the standard orthonormal basis in R4, and let

b]
Ay =& — &, Oy =€) — &, O3 = €3 — €4, Oy = €3 + &4. Then {(11, a,, dj, (14}
is a basis for the root system D,. The associated Dynkin diagram is given by
0

P

O

al\o
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If b denotes the Euclidean inner product on R*, then, t: 22— ZD,
defined by 1) =0;, 1(€,)=—0a;, 2<i<4, is an isometry of
(o, Tr o h) onto (ZD,, b). This proves (a). We note that an element x
in 27 is a unit if and only if 7r o A(x) = 2. Hence (b) follows from the
above isometry. Since Tr © £ is nondegenerate, the dual of 77 in & is the

same as the dual of 2727 in &/ ® R = R*. From (a) it follows that Z#* is
o

isometric to (ZD,)*. Thus (c) follows from the fact that every Z-lattice of
type nD, is isometric to a Euclidean Z-lattice L such that (ZD,)" C L
C (ZD})".

Let us now recall a few arithmetical facts about the Hurwitz quaternionic
integers, details of which can be found in [R]. The dual Z77°* is a two-sided
full 2#-module in .7 i.e. an Z7-submodule of .2/ which contains a Q-basis
of .«Z. The set of all two-sided full Z#-submodules of .7 is a free abelian group
with the set of all maximal ideals of 27 as basis. Further the inverse of 7 *
is a maximal ideal in 27, In fact, (ZF*) 1= & Z=(1+1i), 7= (2),
P = P, and #/P=TF, . We have,

2.2. PROPOSITION.

(a) The quotient 257*/ 27 has the natural structure of a vector space of
dimension one over F,.

(b) The hermitian form h induces a hermitian form w(h) on J°*/ 27,
with values in 2£°*%/2#*, which is isometric to the standard hermitian
form on F,.

Proof. (a) This follows from the fact that, 27°* is an Z7-module of rank
one and Zo* = H* P = 2.

(b) This follows from the commutativity of the diagram:

K| HOX GO A~ GO
! l
KPP X )P > P

where the vertical arrows are the isomorphisms induced by multiplication by
1 + i and 2 respectively and the horizontal arrows are the respective hermitian
forms.

From now on, we shall identify 2#°*/2# with F,, as a one dimensional
vector space for the choice of the basis 1/1 + i
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2.3. PROPOSITION.
(@ Let 2#"C L C s*" be a Z-module. Then (L,Tr o h) is integral
if and only if n(L) is a totally isotropic subspace of the symmetric bilinear
space (Fi, Tr o n(h)), where n(h) is the standard hermitian form
on Fj.
(b) The Z-lattice (L, Tr o h) is unimodular if and only if n(L) is a
maximal totally isotropic subspace of (Fj, Tr o n(h)).

Proof. (a) This follows easily from 2.2.

(b) This follows from (a), since L is unimodular if and only if L is maximal
integral.

§3. PERFECT ISOMETRIES OF Z#-LATTICES

In this section we show that certain special class of Z-lattices admit perfect
isometries. We begin with the following definition.

3.1. Definition. A Z-lattice (L,b) is called an Z#-lattice if L is an
o7-module and & = Tr o h for some hermitian form A.
3.2. PROPOSITION. Every 7#-lattice has a perfect isometry.

Proof. Let (L, Tr o h) be an lattice. Let 6: L — L denote left (or
right) multiplication by & where £ is one of the units (1 + i + j + k)/2. Then,

Tr o h(c(x), 6(»)) = Tr o h(Ex, £y) = Tr(Eh(x, y)E)
= Eh(x, )&+ ER(x, »)E = E(h(x, ¥) + A(x, ) & = EE(h(x, ¥) + h(x, )
= h(x,y) + h(x,y) = Tr o h(x, ) .

Therefore o is an isometry. Since the minimal polynomial of o is x2 — x + 1,
det(l — o) = 1 and hence ¢ is perfect.

As a special case of this we have:
3.3. COROLLARY. The Z-lattice (5#,Tro h) has a perfect isometry.

3.4. PROPOSITION. Every perfect isometry of (2%, Tro h) induces a
perfect ¥y-isomorphism of 2*/2#=7¥,, which corresponds to multi-
plication by ®, where F,(®) =F,.
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Proof. Note that every perfect isometry o of 7% extends naturally to a
perfect isometry of 2#°*, inducing a perfect F,-isomorphism n(c) of
2%/ 2%, n denoting the induced map on the quotient. The proof of the
proposition is complete in view of the following simple lemma.

3.5. LEMMA. An F,-linear isomorphism of ¥, is perfect if and only if it
corresponds to multiplication by ®, where ® denotes a primitive element
of F, over F,.

Proof. An F,-linear isomorphism of F, is perfect if and only if it has no
fixed point other than the trivial element. Since, GL,(F,) = S;, it is easy to
see that every perfect isomorphism of F,, corresponds to multiplication by o,
o being as above.

3.6. PROPOSITION. Let L be a Z-lattice such that #" C L C *".
If L is an Z-lattice, then L has a perfect isometry, which corresponds
to multiplication by ®, on the quotient *"/2¢".

Proof. Multiplication by £ is a perfect isometry of 27" which extends
naturally to a perfect isometry of 5#°*". Clearly the induced map on the
quotient 27°*"/2#°" is multiplication by ®. Since L is an Z#-module, it
preserves L as well. |

In particular,

3.7. COROLLARY. Every Z7-lattice (L,Tr o h) of type nD, has a
perfect isometry.

It is but natural to ask whether every Z-lattice of type nD4 which has a
perfect isometry necessarily admits the structure of an Z7-lattice. We shall
show that this is indeed true. For doing this we need to recall some basic facts
on the automorphisms of the root system nD,.

§4. AUTOMORPHISMS OF THE ROOT SYSTEM nD,; AND PERFECT ISOMETRIES

For any root system R, let 77 (R) denote the Weyl group of R (i.e.
the group generated by the reflections defined by the roots). Then 7 (R)
is a normal subgroup of AutR, which preserves every Z-lattice L such
that ZR ¢ L ¢ ZR#. We thus get a natural map n:AutR/ 7 (R)
— Autz(ZR #/ZR). In view of ([H], p. 72; [C-S], p. 432) this is an injection.
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An element o in Aut(R)/# (R) preserves L if and only if n(c) preserves the
corresponding subgroup n(L) of ZR #*/ZR. If R = D, AutR = 7" (R) PS< Ss,

where, X denotes the semi direct product and S; is the automorphism group
N

of the associated Dynkin diagram:

Consequently, for R = nDy, AutR/% (R)=S; X S, = (GL,(Fy))" X Sy.
Thus the elements of AutR/ % (R) are ‘““monomial matrices’’ where each row
and each column consists of exactly one element of GL,(F;). It acts naturally
on (ZD})"/ZD". In view of the identification of ZD;/ZDy = J°*/ 2%, we
have the following proposition.

4.1. PROPOSITION.
(a) Aut (Y W () = S3 DS< S, = (GLZ(FZ))" DS< S,.

(b) If U denotes the group of units of ¢, then U is a subgroup of
Aut ¢ and U/(# ()N U) ={1l,0,0%}, where Fy(0) = F,.

(c) The conjugation in ¢ belongs to the Weyl group W(H).

Proof. (a) This statement is an immediate consequence of the identi-
fication ZD, = 7.

(b) By (@), Aut 22/ % (2¢) = S; = GL,(F,). Since n(U) = {1, o, ®?}, (b)
follows.
(c) The conjugation in 57 is a product of reflections defined by 7,/ and k.

We now consider the perfect isomorphisms of (2#°*")/ 2" arising out of
Aut (Z7m)/  (7°"). We begin by fixing the following notation:

Let V=F;=X, L X, 1 ..X, with respect to the standard hermitian
form on V, where X;=F,=F, ®F, ={0,1,w,w?}. Let G denote the
group of all » X n monomial matrices with entries in M, (F;), where each row
and each column consists of exactly one element of GL,(F,). Note that every
element of G can be uniquely expressed as a . T, where a is the diagonal matrix

diag(a, ..., 04, ..., 0,), With a; in GL,(F,) and 1 is an n X n permutation
matrix. We have,
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4.2. LEMMA. Let o belonging to G be perfect and let X = X; for
some i. Let m be the smallest positive integer for which ¢™ maps X
onto itself. Then o™/X is perfect.

Proof. The idea of the proof is similar to ([K], Prop. 2). We show
that (1 —6™)/X is surjective. Let M= )  o/(X). Then o leaves M

0gis<m—-1
invariant. Therefore ¢ is a perfect isomorphism of M. Hence (1 — 6)/M:

M — M is surjective. Let x be an element of X. Since, (x,0,...,0)
belongs to M, there exists an element y in M such that (1 - o) (»)
=(x0,...,0). Let y = (¥, Y1, .-.» Ym—1), Where y; belongs to ¢/(X). Then,

1-0)())=(Po=06Im-1), 1=6(¥0) s Ym-1—6(Im-2)) -

Hence, yo — 6(¥m-1) = X, ¥1 = 6(¥0)s ---s Ym—1 = 6(¥m-2). Further, 6 (ym_1)
=62(Ym-2) = ... =06"(¥). Thus (1 -06")(y) = x. This implies that
(1 —o™)/X is surjective.

4.3. COROLLARY. Let o be an element of G which is perfect. Suppose
that c=0a.T, where o = diag(o;, ..., 0y ..., 0y), o; € GL,(F,),
T=717,.%7...%T, and 71; are disjoint cyclic permutations of length n;.
Let T; denote the set of indices belonging to the permutation 7t;. Then
(o)"/X; is perfect for every j belonging to T;.

Proof. Note that for every j belonging to T;, n; is the smallest positive
integer such that (o)™ maps X; onto itself.

4.4. COROLLARY. If o is as above, then (o0)"i/X; corresponds to
multiplication by ® or ®?, for every j belonging to T;.

Proof. Follows from Corollary 4.3, and Lemma 3.5.

4.5. COROLLARY. If o is as above, and X = Y, X;, then (c)"/X®

jeT;
is the matrix diag(a, ..., 0;,...a,), where o; belongs to {®,®?}.

Proof. Clear from Corollary 4.4.

4.6. PROPOSITION. Let o be an element of G which is perfect and let
c=0a.1T, where o and 7t are as in Corollary 4.4. Then there exists an
integer | > 1, such that o' is perfect and o' = B.1', where P is the
matrix diag By, ..., Bj, ..., Bn), with B, in GL,(¥,) and 1’ is a pro-
duct of disjoint cyclic permutations 7; of length 3%.
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Proof. Let 1 =1,.71,...1,, where T; are disjoint cyclic permutations of
length n; = 3% ./, with (3,/;) = 1. Let / denote the least common multiple
of the /;. We show that o’ is perfect. By Corollary 4.5, 6"/X; is multiplica-
tion by @ or w2 for every j belonging to 7;. This implies that (c)"/'i/X;
corresponds to multiplication by ® or w? for every such j, since (///;,3) = 1
and ® is an element of order 3. Hence, (¢/)3'/X® is the matrix
diag(ay, ..., o;, ... 0,,,) where o, belongs to {®, w?}. Clearly this implies that
c!/ X" has no nontrivial fixed point. Since T; are disjoint, it follows that ¢’
has no nontrivial fixed point and hence o/ is perfect. Obviously 6/ has the
required property and the proposition follows.

Now, let M be an F,-linear subspace of V, which is invariant under a per-
fect isomorphism o belonging to G. By the previous proposition, we can
assume, by replacing o by o™, that M is invariant under 6 = o . T, where a
is as in Corollary 4.4 and T = 1,.7,... T,, T; being cyclic permutations of
length 3%,

4.7. PROPOSITION. If M is an F,-linear subspace of V which has a
perfect isomorphism o belonging to G, then M is invariant under the
action of a diagonal matrix, diag(a,,...,q;,...,0,) Wwhere each «;
belongs to {w, ®?}.

Proof. By replacing ¢ by a suitable power we may assume that

c = diag(Bs, ..., Bis .o, B) TiT2 o T,

where B; belongs to GL,(F,) for every i and t; are disjoint cyclic permutations
of length 3%, Further, since disjoint cycles commute we may assume that the
length of 7; is 3% for 1 < i <s and the length of t; is less than 3% for
s<igr. Let T={ie{l,2,...,n}|i occurs in the permutation 1,7, ... Ts}.
Let Mi=Mn )} X;and Ny =Mn Y X;. We claim that M = M, @ N,

ieT ieT
and that M, is invariant under diag(a,, ..., a;, ..., a,), where each o; belongs
to {®, w?}. Let (x,y) e M, where xe 1 X;, ye L X;. Since
ieT i¢T
o = diag(ay, ..., 0, ..., Q) ,

where o; belongs to {w, w2} for i e T and a; = 1 for i ¢ T, it follows that,
x,y) + o¥(x,¥) + (6¥)2(x, y) = (0, y) belongs to M. Hence (x, 0) belongs
to M as well. Thus M =M, @ N,. Clearly M, is invariant under
diag(ay, ..., a;, ..., 0,), o; being in {w,®2}. Since 6/N; is perfect, by
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repeating the above argument we obtain a similar decomposition of
N;: Ny = M, @ N,. This process terminates in a finite number of steps and
we obtain a decomposition M =M, ®@ M, ® ... ® M,, where each M, is
invariant under diag(oy, ..., 0, ... 0.;), 0; being in {w, ®?}.

§5. MAIN THEOREM AND EXAMPLES

In this final section we prove our main results 5.2, 5.3 and give some
examples. We begin with,

5.1. PROPOSITION. Let L be a unimodular Z-lattice of type nD, such
that 2" C L C 2#*". If L admits a perfect isometry, then there exists
an isometry & = diag(d,,...,8;,...,8,) on #*"', where §; is the
isometry on 2#£°* given by left multiplication by & or right multiplication
by E such that L is invariant under §.

Proof. Let o be a perfect isometry of (L, 7r o h). Then o induces
an automorphism of 2#°" and extends naturally to a perfect isometry of
%", In view of ([K], p. 179), n(c) is a perfect isomorphism of FJ,
leaving mn(L) invariant. Therefore by Proposition 4.7 there exists
o = diag(aq, ..., 0, ..., 0,) With o; in {®, ®2} such that (L) is invariant
under a. Let §; denote left multiplication on Z#°* by € = (1 +i+j+ k)/2 if
o; = ® and right multiplication by & = (1 —i—j— k)/2, if o; = @2. Let
8 = diag(d,, ..., 8;, ..., 8,). Since & induces an isometry of Z#°*" which fixes
7" and (8) = o leaves n(L) invariant it follows that & leaves L invariant.

5.2. THEOREM. Let (L,S) be an unimodular Z-lattice of type nD,.
Then, L has a perfect isometry if and only if there exists an ¢ -lattice
(L',S’) such that L =1L".

Proof. Clearly every 2#-lattice admits a perfect isometry (3.2).
Conversely let (L, S) be a Z-lattice of type nD,, which admits a perfect iso-
metry. In view of Proposition 2.1, we can assume that 7" C L ¢ *" and
S = Tr o h. By Proposition 4.7 there exists a subset T" of {1, 2, ..., n} such
that L is invariant under & = (&4, ..., &;, ..., 8,), where §; is left multiplica-
tion by & for i e T and §; is right multiplication by £ for i¢ T. Let
fi "> 2" be defined by f = diag(fi, ..., fi, ..., fo) where f; =1id for
i € T and f; = the involution on 27 for i ¢ T. Then it is easy to check that
f is an isometry of (L, Tr © h) onto (L', S") where, L’ = f(L), and,

S'(x,y) = Y, iy +yix;) + Y Gy + yix)

ieT i¢T
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Clearly L’ is invariant under left multiplication by £. Further, since
PL’ ¢ Pa*" ¢ " c L', it follows that L’ is an Z#~lattice.

Finally, we have the following analogue of Proposition 1.5 for the case of
lattices having components of type Dy.

5.3. THEOREM. Let (L,S), be a positive definite unimodular symmetric
bilinear space over Z, of rank n. Suppose that the set of vectors of
norm 2 form a root system of type

R = L A2k,- 1L QE6 L rEg 1 SD4

1<i<p
with, Y. 2k;+ 6q + 8r + 4s = n. Then the following hold:
1<i<p
(i) The Z-lattice L decomposes as L =1, 1 L, L Ly, where each L;
is unimodular, with asociated root systems of type Ry = 1 Ay, L gEq,

lgigp

R, = rEs, Ry = sDy, respectively.

(i) The Z-lattice L admits a perfect isometry if and only if Ls; s
isometric to the trace form of an 77 -lattice.

(i) If L admits a perfect isometry, then it admits a perfect isometry o
such that the induced map m(c) on ZR*/ZR, corresponds to multipli-
cation by — 1, on the components corresponding to Ay, Eg, and Es,
and to multiplication by ®, on the components corresponding to D.

Proof. (i) Since Eg is unimodular, it is clear that L = L, 1 K, where
L, = rZEg, and K is unimodular with associated root system of type
R; L R;. So to prove (i), it is enough to prove that K decomposes as L; L L;.
This would follow if we show that m(X) decomposes as, n(K) = n(K)
N (ZR}/ZR, ) L n(K) n (ZR} /ZR3).

Let z = (x,y) € n(K), with x in ZR}/ZR, and y in ZR}/ZR;. Since
ZR]/ZR, is a group of exponent 3. [[ (2k;+ 1), and ZR?/ZR; = F7,

I1<igp
it follows that, (0,y) = 3( [] Qk:+ 1))z € n(X). Hence (i) follows.
1<i<p

The results (i) and (iii) follow from (i), (5.2) and ([K], Prop. 4).

5.4. Examples. We conclude this section by giving some examples of

o¢-lattices of type nD, as well as Z-lattices of type nD, which are not

o -lattices. Let {ex}; <r<n. denote the standard Z#“basis of 2#". We
2j+4

consider two cases. For n = 4m, let g;,, = Z e, 0<j<2m - 2, and
k=2j+1
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2m - 1 2j + 4
Eam= ), €x+1. For n=4m+2, letg,; = Y e,0<j<2m—1,
k=0 k=2j+1
2m - 1 B
and €,y = ), €xs1 + Elsms1 + E€am. Let A =1/1 +i and let L, be
k=0

the Z7"-lattice generated by 527" U {Ag, A&y, ..., A&,/ }. In view of [M-O-S],
n(L) is a maximal totally isotropic subspace of F}, and every vector x € n(L)
has at least four nonzero coordinates. Since Tr © hA(x,x) > 1, for every x
belonging to 7#°*, it follows easily that the set of vectors of norm 2 in L, is
nD,. Clearly L, is unimodular.

For n = 6, this gives the unique unimodular Z-lattice of type 6D, which is
also an 7#*-lattice. In view of [M-O-S], table III, and Proposition 2.3, one can
determine all indecomposable Z-lattices of type nD, for n < 14, which are
##-lattices. The following construction gives an example of a Z-lattice of type
8D,4 which does not admit a perfect isometry. (In particular this shows that
the smallest dimension for which there exists a Z-lattice of type nD, which is
not an s#-lattice is 32). For 1 < k < 8, let p; be equal to & if k£ is even and

2j+4 2j+ 4

let py beequalto 1if kisodd. LetB;,, = Y, pie, Bjza= Y pPisi€

i=2j+1 i=2j+1

4 4
for n<j<2,B;=E.) e;and Bg=E. ) e_;. Let A be the Z-linear

i=1 i=1

subspace of 2°*® spanned by 2% and {ABi}1<i<s. Then m(A) is a
maximal totally isotropic subspace of (F}, Tr o n(h)). It can be easily
checked that A is a Z-lattice of type 8D,. Further n(A) is not invariant
under diag(a;, ..., a;, ..., ag) for any choice of a;in {w, ®?}. Thus in view of
Proposition 4.7, the lattice A does not admit any perfect isometry. The above
construction easily generalizes to give a family of Z-lattices A4, of dimension
16m, m > 2, which are not Z#-lattices.
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