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PROPOSITION 9. Let (F, ||) be a field with a non-archimedean absolute
value, and suppose the residue field is contained in the algebraically closed
field R. Define K and L as the Mal’cev-Neumann fields with value
group R and residue field R. (Define the p-adic Mal’cev-Neumann
field L only if charR > 0.) The valuations on K and L induce
corresponding absolute values. Then there exists an absolute value-preserving
embedding of fields ¢:F— K or ¢:F— L, depending on if the restriction
of || to the minimal subfield of F is the trivial absolute value (on Q
or ¥,) or the p-adic absolute value on Q.

Similarly, Proposition 8 above gives a glueing proposition for non-
archimedean absolute values. In fact, this result holds for archimedean
absolute values as well, in light of Ostrowski’s theorem.

7. EXAMPLE: THE MAXIMALLY COMPLETE IMMEDIATE EXTENSION OF Q,

For this section, (L, v) will denote the p-adic Mal’cev-Neumann field
having value group Q and residue field Fp. We have a natural embedding of
Q, into L. By Corollary 4, L is algebraically closed, so this embedding
extends to an embedding of (—)p into L (which is unique up to automorphisms
of Qp over Q,.) In fact this embedding is continuous, since there is a unique
valuation on Q, extending the p-adic valuation on Q,. Since Q, has value
group Q and residue field Fp, L is an immediate extension of Qp. By
Corollary 6, L is in fact the unique maximally complete immediate extension
of (_)p. Also, any valued field (F, w) of characteristic 0 satisfying

(1) The restriction of w to Q is the p-adic valuation;
(2) The value group is contained in Q;
(3) The residue field is contained in l_?p;

can be embedded in L, by Corollary 5. For example, the completion C, of
Q, can be embedded in L. (This could also be proved by noting that L is
complete by Corollary 4.)

We will always use as the set S of representatives for F, the primitive kt
roots of 1, for all k£ not divisible by p, and 0. Then the elements of L have
the form } o, p® for some primitive k' roots a, of 1, where the exponents
form a well-ordered subset of Q. In particular, the elements of Qp can be
expressed in this form. This was first discovered by Lampert [9].
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Example: (similar to those in [9]) Let p be an odd prime. The p' roots
of 1 — p in Q, have the expansion

1 _pl/p +pl/p+1/p2 _pl/p+1/p2+1/p3 + -
+ {pl/®-D + (higher order terms) ,

where ( is any one of the p solutions to {#» = —{ in (_)p.

PROPOSITION 10. The fields L and Q, have cardinality 2%o (and
hence so do all intermediate fields).

Proof. Each series in L defines a distinct function Q — Fp by sending g
to the residue class of the coefficient of p2. The number of such functions is
Ro® = 2%0, so|L|< 2%. On the other hand, as is well known, | Q, | = 2 %o
already, so the result follows. [

Since L and C, are both complete algebraically closed fields of cardinality
2 %o, it 1s natural to ask if L = C,. That L strictly contains C, follows from
Lampert’s remark that the support of the series of an element of Q, is

1
contained in X[Z[l/p] for some N, and that the residue classes of the

coefficients in the series lie in F, for some g¢q. (For example,
plt+p-V24+ p-1/3 4 ... s an element of L which cannot be approached
by elements of (_)p.) In fact, we can show that the set of series with these
properties forms an algebraically closed field, using the following lemma,
which is of interest in its own right, and which we can apply also toward the
computation of the algebraic closure of Laurent series fields.

LEMMA 5. Suppose E is an algebraically closed field, and S C Aut(E).
Let F be the set of elements ecE whose orbit {c(e)|c € S} under S
is finite. Then F is an algebraically closed subfield of E.

Proof. Let Orb(x) denote the orbit of x under S. If x,y € F, then
Orb(x + y) € Orb(x) + Orb(y) which is finite, so x + y € F. Similar
considerations complete the proof that F is a subfield.

Given p(x) € F[x], let ¢ be a zero of p in E. Then the orbit of p(x) under
S is finite (since each coefficient has finite orbit), and Orb(c) consists of zeros
of polynomials in the orbit of p(x) (to be specific, c(c) is a zero of 6 (p)), so
c € F. Hence F is algebraically closed. [

The characteristic p case of the following corollary was proved by
Rayner [16] using a different method.
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COROLLARY 7. If k is an algebraically closed field of characteristic 0,
then k(@) = uZ_, k(™). If k is an algebraically closed field of
characteristic p, then the set of series in k((Q)) with support in

iZ[l/ pl for some N (depending on the series) is an algebraically closed
N

field containing k((2)).

Proof. If { is a homomorphism from Q/Z to the group of all roots of
unity in k, then we get an automorphism of the algebraically closed Mal’cev-
Neumann ring k((Q)) by mapping ¥, .o®?? t0 X, 0G(@ o, Let
E = k((Q)) and let S be the set of all such automorphisms. Then the lemma
shows that the set F of elements of E with finite orbit under S is an
algebraically closed field. If chark = 0, F = U /.  k((z'/™)), and the desired
result follows easily. If char k = p, Fis the set of series in k((Q)) with support

1 : ..
in NZ[I/p] for some N (since { is necessarily trivial on Z[1/p]/Z). []

1
COROLLARY 8. The set of series in L with support in ]—VZ[l/ vl for

some N such that the residue classes of the coefficients lie in ¥, for
some q forms an algebraically closed field which contains Q,, hence
also Q,.

Proof. If p denotes the group of all k" roots of 1 for all k relatively
prime to p, and {:Q/Z — p is any group homomorphism, then we get an
automorphism of A((Q)) (using the notation of Section 4) by sending
Yeeolgléto X, co 5@ a, s, This maps the ideal N into itself, so it induces
an automorphism of L. We also get automorphisms of L coming functorially
from the automorphisms of F,.

Let E = L, and let S be the set of both types of automorphisms. Then the
elements of L with finite orbit under the first type of automorphisms are

1
those with support in ;]Z[l/p] for some N, and the elements with finite

orbit under the second type of automorphisms are those such that the residue
classes of the coefficients lie in F, for some g. Hence the result follows from
the lemma. (Obviously this field contains Q,.) [

There are many automorphisms of L besides those used in the previous

proof. In fact, L has an enormous number of continuous automorphisms even
over C,.
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PROPOSITION 11. Given pelL/C,, let r =sup,. va(u —e) € R.
Then for any W' € L such that v(p — ') > r, there exists a continuous
automorphism of L over C, taking p to p’'.

Proof. We will extend the inclusion C, — L to an embedding C,(n) > L
using the proof of Theorem 2 (instead of taking the obvious inclusion). There
is no best approximation to p in C,, since given any approximation, we can
find a better one by subtracting the leading term of the series of the difference.
So we are in Case 2 of the proof of Theorem 2, and it follows that we may
embed C,(p) in L by sending p to any solution pu” € L of the inequalities
v(x — e;) = &5, where e, ranges over all elements of C, and g, = v(p — e;).
These are satisfied if v(u — p”) > r, by the triangle inequality. Finally, extend
this embedding C,(n) > L to a continuous endomorphism L — L using -
Theorem 2. This endomorphism is an automorphism by Proposition 7. [

Lampert proved that C, has transcendence degree 2¥o over the completion
C,""" of the maximal unramified extension Q,"*" of Q,, and that C,;"™"
has transcendence degree 2 o over Q,. We now extend this chain of results
by calculating the transcendence degree of L over C,, using the following
generalization of a proposition of Lampert’s.

PROPOSITION 12. If V is a sub-Q-vector space of R containing Q,
then the set of elements in L of which all the accumulation values of the
exponents are in 'V form a complete algebraically closed field.

Proof. The proof is exactly the same as Lampert’s proof for the special

case V =0QI[9]. [
COROLLARY 9. L has transcendence degree 2% over C,.

Proof. Let B be a basis for R as a vector space over Q, with 1 € B. For
each b € B, b # 1, pick a strictly increasing sequence ¢;, ¢, ... in Q with
limit b, and define z, = p9t1 + p9%2+ --+ € L. Let K, be the field of
Proposition 12 with V the Q-vector space generated by all elements of B except
b. Then K, contains C,, since it contains Q, and is complete and alge-
braically closed. If ¢ € B, z. € K, iff ¢ # b. But each K, is algebraically
closed, so no z, can be algebraically dependent on the others over C,. Thus
the transcendence degree of L over C, exceeds the dimension of R over Q (it
does not matter that we threw away one basis element), which is 2%0, On the
other hand the cardinality of L is only 2%¢, by Proposition 10. So the
transcendence degree must equal 2%,  []
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Traditionally, p-adic analysis has been done in C,. But every power series
F(X)= Y*_,a,X" with a, € C, can be defined on L, and the radius of
convergence is the same in L as in C,, because in either field the series
converges iff the valuation of its terms approach + c. (Remember that L is
complete.) As an example, we state the following proposition.

PROPOSITION 13. There exists a unique function log,:L* = L such
that

(1) logyx=Y=_,(=D"*'(x—-1)"/n, for vix—1)>0.
(2) log,xy = log,x + log,y, for all x,y e L*.
3) log,p = 0.

Proof. The proof for L is exactly the same as the proof for C,. See
pp. 87-88 in [7]. [J

Although we can extend any power series defined on C, to L, it seems
that p-adic analysis rarely (if ever) would need to use properties of L not true
of C,. All that seems important is that the field is a complete algebraically
closed immediate extension of Qp. It would be interesting to investigate
whether anything can be gained by doing p-adic analysis in L instead of in
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