Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: MAXIMALLY COMPLETE FIELDS

Autor: Poonen, Bjorn

Kapitel: 4. p-adic Mal'cev-Neumann fields

DOI: https://doi.org/10.5169/seals-60414

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-60414
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

MAXIMALLY COMPLETE FIELDS 91

4. p-ADIC MAL’CEV-NEUMANN FIELDS

To construct analogous examples of characteristic zero whose residue field
has nonzero characteristic requires a more complicated construction. First we
recall two results about complete discrete valuation rings. For proofs, see [17],
pp. 32-34.

A valued field (F,v) is called discrete if v(F) = Z.

PROPOSITION 1. If R is a perfect field of characteristic p >0, then
there exists a unique field R’ of characteristic 0 with a discrete valua-
tion v such that the residue fieldis R,v(p) =1 ¢€ Z, and R’ iscomplete
with respect to v. (The valuationring A of R’ is called the ring of Witt
vectors with coefficients in R.)

For example, if R = F,, then R’ = Q, with the p-adic valuation.

PROPOSITION 2. Suppose F is field with a discrete valuation v, and
t € F satisfies v(t)=1. Let S CF be a set of representatives for the
residue classes with 0 e S. Then every element x € F can be written
uniquely as Y, _,Xwt™, where X, €S foreach m, and x,=0 for
all sufficiently negative m. Conversely, if F is complete, every such series
defines an element of F.

Now for the construction. Let R be a perfect field of characteristic p, and
let G be an ordered group containing Z as a subgroup, or equivalently with
a distinguished positive element. (When we eventually define our valuation v,
this element 1 € G will be v(p).) Let A be the valuation ring of the valued field
(R’,v") given by Proposition 1.

What we want is to have the indeterminate ¢ stand for p in elements of
A((G)), so we get elements of the form Y, ,a,pe. The problem is that
some elements of A ((G)), like — p + ¢!, ““should be”’ zero. So what we do

is to take a quotient A ((G))/N where N C A ((G)) is_the ideal of elements that
““should be’’ zero.

We say that o = ¥ o, € A((G)) is a null series if for all g € G,
YnezOg+nP" = 01n R’. (Recall that we fixed a copy of Z in G.) Note that
a,+, = 0 for sufficiently negative n, since otherwise Supp a would not be

well-ordered. Also, v’ (0, ,p") = A, sO Y ez % +np™ always converges in R”.
Let N be the set of null series.
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PROPOSITION 3. N s an ideal of A((G)).

Proof. Clearly N is an additive subgroup. Let G’ C G be a set
of coset representatives for G/Z. Suppose o = ¥ cegUgl® € A{G)),
B= X,coBut" €N, and af = ¥, _;v;#/. Then for each j € G,

Y YienD"= Y, 0gBsp"
nelZ g+h=j+n
nelkl

) (@~ p 412 Brr s md™)
h'eG’
l,mel

(We write h = h" + m with " e G" and let /[ = n — m.)
Since BeN, Y, Brimpm=0 for each h'eG, so we get
YnezYi+nP" = 0. (These infinite series manipulations in R’ are valid,

because for each i € Z, only finitely many terms have valuation less than i,
since each v, , is a finite sum of products a,B,.) Hence N is an ideal. [

Define the p-adic Mal’cev-Neumann field L as A ((G))/N.

PROPOSITION 4. Let S C A be a set of representatives for the residue
classes of A, with 0€S. Then any element o =Y _0,.t8 € A((G))
is equivalent modulo N to a element B =Y _.B.t¢ with each B,
in S. Moreover, B is unique.

Proof. Let G’ C G be a set of coset representatives for G/Z. For each

g € G', we may write

Z 0~g+npn = Z Bg+np'z

nelZz neZl
with B,., € S, by Proposition 2. (This is possible since R’ is complete with
respect to its discrete valuation.) Then B = ) . Y, czBeint” is a well-
defined element of A4 ((G)), since Supp (B) € (Supp @) + N, which is well-
ordered by part 2 of Lemma 1. Finally o — B € N, by definition of N. The
uniqueness follows from the uniqueness in Proposition 2. [

COROLLARY 3. L = A((G))/N is a field.

Proof. The previous proposition shows that any a € 4 ((G)) is equivalent
modulo N to 0 or an element which is a unit in 4 ((G)) by Corollary 1. [

Proposition 4 allows us to write an element of L uniquely (and somewhat
carelessly) as B = ¥, cPBep¥, with B, € S. Thus given S, we can speak of
Supp (B) for B € L. Define v: L = G, by v(B) = min Supp B.
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PROPOSITION 5. The map v is a valuation on L, and is independent
of the choice of S. The value group is G and the residue field is R.

Proof. For o =Y 0. t¢ € A((G)), define

geCG

w(o) =mm{g+u'<2 ag+,,pn>} .
geG nel

The elements in the ‘“min’’ belong to (Supp (a) + N) u {}, which is well-
ordered by part 2 of Lemma 1, so this is well defined. It’s clearly unchanged
if an element of N is added to a. In particular, if we do so to get an element
o’ € A((G)) with coefficients in S, we find w(a) = w(a’) = min Supp a’.
Thus if B is the image of a in L, v(a) = w(B). Since w is independent of the
choice of S, soisv. If a’, B’ are the representatives in A ((G)) with coefficients
in S of elements a,p € L, then it is clear that w(a'f’) = w(a’) + w(B")
(because the leading coefficient of o’B’ has valuation 0 under v’) and that
w(@ +B) = min{w(a’), w(B")}. Thus v is a valuation.

The value group of v is all of G, since v(p¢) = g for any g € G. The
natural inclusion A C 4 ((G)) composed with the quotient map A((G)) — L
maps A into the valuation ring of L, which consists of series } ¢ 00Uz D8, SO
it induces a map ¢ from A to the residue field of L. The residue class of
Lgso0gD8 equals ¢ (ay) € A (since the maximal ideal for L consists of series
LosodeD®). Thus ¢ is surjective. Its kernel is the maximal ideal of A4, so ¢
induces an isomorphism from the residue class field of A to that of L. ]

For example, if R is any perfect field of characteristic p, and G = k~'Z
for some k£ > 1 (with its copy of Z as a subgroup of index k), then
L = R’'(1¥'p) with the p-adic valuation. '

LEMMA 3. If a= Y, _;0p% and B= Y,  ;B,p? with a,B, €S
are two elements of L, then v(a—B)=min{ge G|a,#B,}. (The
corresponding fact for the usual Mal’cev-Neumann fields is obvious.)

Proof. Let w be the map used in the proof of the previous proposition.
Let a'= Y, ;0.%% and B'= Y _ ;B¢ in A((G)). Then v(a - B)
=w(@ -B’). If go=min{ge G|o,#PB,}, then the leading term
of a’ — B’ is (0, — Bg,) 180, and the leading coefficient here has valuation 0
under v’, since a,,, By, represent distinct residue classes, so w(a’ — pB’) = g,
as desired. [

Remarks. Since the construction of 4 from R is functorial (the Witt
functor), it is clear that the construction of L from R is functorial as well (for
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each G). However, whereas the Witt functor is fully faithful on perfect fields
of characteristic p, this new functor is not. For example, Proposition 11 (to
be proved in Section 7) shows L can have many continuous (i.e. valuation-
preserving) automorphisms not arising from automorphisms of R.

Our construction could be done starting from a non-abelian value group
to produce p-adic Mal’cev-Neumann division rings, but we will not be
interested in such objects.

5. MAXIMALITY OF MAL’CEV-NEUMANN FIELDS

A valued field (E, w) is an immediate extension of another valued
field (F,v) if

(1) E is a field extension of F, and w |r = v.

(2) (E,w) and (F, v) have the same value groups and residue fields.

A valued field (F, v) is maximally complete if it has no immediate extensions
other than (F, v) itself. (These definitions are due to F.K. Schmidt, but were
first published by Krull [8].) For example, an easy argument shows that any
field F with the trivial valuation, or with a discrete valuation making it
complete, is maximally complete.

PROPOSITION 6. Let (F,v) be a maximally complete valued field with
value group G and residue field R. Then

(1) F is complete.

(2) If R isalgebraically closed and G is divisible, then F s algebrai-
cally closed.

Proof. (1) The completion F of Fis an immediate extension of F
(see Proposition 5 in Chapter VI, §5, no. 3 of [2]), so F = F.

(2) The algebraic closure F of F is in this case an immediate extension
of F (see Proposition 6 in Chaptf:r VI, §3, no. 3 and Proposition 1 in
Chapter VI, §8, no. 1 of [2]), so F = F.

(This delightful trick is due to MacLane [10].) [

PROPOSITION 7. Any continuous endomorphism of a maximally
complete field F which induces the identity on the residue field is auto-
matically an automorphism (i.e., surjective).

Proof. The field F is an immediate extension of the image of the
endomorphism, which is maximally complete since it’s isomorphic to F. [
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