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be embedded in a divisible one, namely its injective~hull. Since an ordered
group G is necessarily torsion-free, its injective hull G can be identified with
the set of quotients g/m with g € G, m a positive integer,~modulo the
equivalence relation g/m ~ h/n iff ng = mh in G. We make G an ordered
group by setting g/m > h/n iff ng > mh in G. (One can check that this is the
unique extension to G of the ordered group structure on G.)

If G is an ordered group, let G, = G U {>} be the ordered monoid
containing G in which g + o = o + g = o for all g € G, and g <  for all
g € G. As usual, a valuation v on a field F is a function from F to G
satisfying for all x,y € F

(1) v(x) = o iff x =0
(2) v(xy) = v(x) + V()
(3) v(x +y) = min {v(x),v(»)}.

The value group is G. The valuation ring A is {x € F |v(x) = 0}. This is a
local ring with maximal ideal .# = {x € F|v(x) > 0}. The residue field is
A/ #. We refer to the pair (F, v) (or sometimes simply F) as a valued field.

3. MAL’CEV-NEUMANN RINGS

This section serves not only as review, but also as preparation for the
construction of the next section. Mal’cev-Neumann rings are generalizations
of Laurent series rings. For any ring R (all our rings are commutative
with 1), and any ordered group G, the Mal’cev-Neumann ring R((G)) is
defined as the set of formal sums o = ¥ _;0,7¢ in an indeterminate ¢ with
o, € R such that the set Suppa ={ge G | a, # 0} is a well-ordered subset
of G (under the given order of G). (Often authors suppress the indeterminate
and write the sums in the form Y a,g, as in a group ring. We use the
indeterminate in order to make clear the analogy with the fields of the next
section.) If o = ¥, ;0,78 and B = ¥, ;B¢ are elements of R((G)), then
o + B is defined as ¥ gec(Og+ Bo) 28, and af is defined by a ““distributive
law’” as ¥ . ;v;¢/ where y; = Ygsne,%Pn

LEMMA 1. Let A, B be well-ordered subsets of an ordered group G.
Then

(1) If xeG, then An (—B+Xx) Iis finite.
(We define — B+ x={-b+x|beB}.)
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(2) Theset A+ B={a+blaeA,be B} is well-ordered.
(3) The set A u B is well-ordered.

Proof. See [13]. U

The lemma above easily implies that the sum defining vy, is always finite,
and that Supp(a + B) and Supp (ap) are well-ordered. Once one knows that
the operations are defined, it’s clear that they make R((G)) a ring.

Define v: R((G)) = G by v(0) = o and v(a) = min Supp a for a # 0.
(This makes sense since Supp a is well-ordered.) If a € R ((G)) is nonzero and
v(a) = g, we call a,78 the leading ferm of a and a, the leading coefficient. 1f
R is a field, then v is a valuation on R((G)), since the leading term of a
product is the product of the leading terms.

LEMMA 2. If o € R((G)) satisfies v(a) >0, then 1 — o is a unit
in R((G)).

Proof. One way of proving this is to show that for each g € G, the
coefficients of #¢in 1, a, a2, ... are eventually zero, so 1 + o + a2 + - -+ can
be defined termwise. Then one needs to check that its support is well-ordered,
and that it’s an inverse for 1 — a. See [13] for this. An easier way [15] is to
obtain an inverse of 1 — a by successive approximation. [

COROLLARY 1. If the leading coefficient of ae€R(G)) is a unit
of R, then o is a unit of R((G)).

Proof. Let rté be the leading term of o. Then a is the product of rzé,
which is a unit in R((G)) with inverse 7 ~'¢~-¢, and (r£¢) ~'a, which is a unit
by the preceding lemma. [

COROLLARY 2. If R s a field, then R((G)) is a field.

So in this case, if we set K = R((G)), (K, v) is a valued field. Clearly the
value group is all of G, and the residue field is R. Note that char K = char R,
since in fact, R can be identified with a subfield of K. (We will refer to
these fields as being the ‘‘equal characteristic’’ case, in contrast with the p-adic
fields of the next section in which the fields have characteristic different from
that of their residue fields.) For example, if G = Z, then R((G)) is the usual
field of formal Laurent series.
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