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be embedded in a divisible one, namely its injective hull. Since an ordered

group G is necessarily torsion-free, its injective hull G can be identified with

the set of quotients g/m with g e G, m a positive integer, modulo the

equivalence relation g/m ~ h/n iff ng mh in G. We make G an ordered

group by setting g/m ^ h/n iff ng ^ mh in G. (One can check that this is the

unique extension to G of the ordered group structure on G.)

If G is an ordered group, let G«, G u {00} be the ordered monoid

containing G in which g + oo oo + g= oo for all g e Goo and g < 00 for all

g e G. As usual, a valuation 0 on a field F is a function from F to Gœ

satisfying for all x,y e F

(1) u(x) 00 iff x 0

(2) u(xy) v(x) + u(y)

(3) v(x + y) ^ min {ü(x), uC)}

The value group is G. The valuation ring A is {x e F \ v(x) ^ 0}. This is a

local ring with maximal ideal {x e F | ^(x) > 0}. The residue field is

A/J/. We refer to the pair (F, v) (or sometimes simply F) as a valued field.

3. Mal'cev-Neumann rings

This section serves not only as review, but also as preparation for the

construction of the next section. MaPcev-Neumann rings are generalizations
of Laurent series rings. For any ring R (all our rings are commutative
with 1), and any ordered group G, the Mal'cev-Neumann ring F ((G)) is

defined as the set of formal sums a Y,geGOLgt8 in an indeterminate t with
ag e R such that the set Supp a {geG|a^^0}isa well-ordered subset

of G (under the given order of G). (Often authors suppress the indeterminate
and write the sums in the form £ agg, as in a group ring. We use the
indeterminate in order to make clear the analogy with the fields of the next
section.) If a EgeGagt* and ß are elements of F((G)), then
a + ß is defined as E^gG(a^ + ß^)F, and aß is defined by a 44distributive
law" as ï,JeGyjtjwherejj Zg + h=jag$h.

Lemma 1. Let A} B be well-ordered subsets of an ordered group G.

Then

(1) If x e G, then A n (- B + x) is finite.
(We define -B + x {- b + x\beB}.)



90 B. POONEN

(2) The set A+B {a + b\ aeA,beB} is well-ordered.

(3) The set A u B is well-ordered.

Proof. See [13].

The lemma above easily implies that the sum defining jj is always finite,
and that Supp(a + ß) and Supp(aß) are well-ordered. Once one knows that
the operations are defined, it's clear that they make R((G)) a ring.

Define u:R((G)) - Gœ by u(0) oo and u(a) minSuppa for a 0.

(This makes sense since Supp a is well-ordered.) If a e R((G)) is nonzero and

y(a) we call agtg the leading term of a and ag the leading coefficient. If
R is a field, then u is a valuation on i?((G)), since the leading term of a

product is the product of the leading terms.

Lemma 2. If a e R((G)) satisfies v(a) > 0, then 1 - a is a unit
in R ((G)).

Proof. One way of proving this is to show that for each geG, the

coefficients of tg in 1, a, a2, are eventually zero, sol + a + a2 + ••• can
be defined termwise. Then one needs to check that its support is well-ordered,
and that it's an inverse for 1 - a. See [13] for this. An easier way [15] is to
obtain an inverse of 1 - a by successive approximation.

Corollary 1. If the leading coefficient of a e R((G)) is a unit

of R, then a is a unit of R((G)).

Proof. Let rtg be the leading term of a. Then a is the product of rt8,
which is a unit in R((G)) with inverse r~xt~g, and {rtg)~la, which is a unit
by the preceding lemma.

Corollary 2. If R is a field, then R((G)) is a field.

So in this case, if we set K R((G)), (.K, u) is a valued field. Clearly the

value group is all of G, and the residue field is R. Note that char K char R,
since in fact, R can be identified with a subfield of K. (We will refer to
these fields as being the '4equal characteristic" case, in contrast with thep-adic
fields of the next section in which the fields have characteristic different from
that of their residue fields.) For example, if G Z, then R((G)) is the usual

field of formal Laurent series.
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