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GÈBRES 83

le revêtement de SL2(A) défini par C. Moore et T. Kubota; on a une suite

exacte

et S est son propre groupe dérivé. Montrer que toute représentation ^-linéaire

analytique du groupe de Lie S est triviale sur p; en déduire que SL2 est

l'enveloppe de S. (Si G est l'enveloppe de S, remarquer que la suite

SL2 {1}

est exacte (cf. exercice 5). Utiliser ensuite le fait que SL2 est simplement

connexe.)

§5

1) Etendre la prop. 1 au cas d'un groupe compact K opérant continûment

sur un espace vectoriel réel V de dimension finie, chacune des opérations
de K étant polynomiale. (On montrera d'abord, au moyen du théorème de

Baire, que le degré de ces opérations est borné.)

2) Soit H un sous-groupe algébrique réel de GL„. Montrer que H est

anisotrope si et seulement si il existe une forme quadratique positive non
dégénérée sur R" qui est invariante par H.

3) a) Soit G un groupe algébrique linéaire réel, et soit H un sous-groupe
algébrique distingué de G. On suppose que H et G/H sont anisotropes, et que
G/H est connexe. Montrer que G est anisotrope.

b) On prend pour G le groupe des matrices de la forme ] avec
\ a)

(1a2+ b2)21 et pour H le sous-groupe de celles pour lesquelles
a2 + b2 1. Le groupe G/H s'identifie au groupe «constant» {±1}.
Montrer que H et G/H sont anisotropes et que G ne l'est pas.

4) Avec les notations de la prop. 7, montrer que l'injection de F(R)
dans V(C) est une «équivalence d'homotopie». (Il suffit de voir que
7t, (F(R)) - 7t/ V(C))est un isomorphisme pour tout /; utiliser le lemme des

cinq pour se ramener à l'énoncé analogue pour G et H.) [Exercice: donner
explicitement une «rétraction de déformation» de V(C) sur F(R).]

En particulier, la quadrique complexe d'équation E z • 1 a même type
d'homotopie que l'ensemble de ses points réels; énoncer des résultats analogues
pour les variétés de Stiefel, etc.
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5) (Cet exercice pourrait remonter au chapitre III du livre de Lie.)

Soit A un groupe de Lie complexe, commutatif, connexe, d'algèbre de

Lie a; soit A le noyau de exp: a A, de sorte que A s'identifie à a/A.

a) Démontrer l'équivalence de:

ai) L'application canonique C 0 A -> a est injective.

a2) A est isomorphe à un sous-groupe de Lie d'un (C*)".
a3) A est isomorphe à un groupe (C*)^ x Cq.

a4) A possède une représentation linéaire complexe fidèle.

a5) A possède une représentation linéaire complexe fidèle semi-simple

d'image fermée.

b) Démontrer l'équivalence de:

bi) L'application C ® A -> a est surjective.

b2) A est isomorphe à un quotient d'un groupe (C*)".
b3) Aucun facteur direct de A n'est isomorphe à C.

b4) Toute représentation linéaire complexe de A est semi-simple.

c) Démontrer l'équivalence de:

Ci) L'application C 0 A -> a est bijective.

c2) A est isomorphe à un (C*)".

d) Soit F un sous-groupe fini de A, et soit A' A/F. Montrer que A
vérifie les conditions ai) (resp. &;), C/)) si et seulement si A' les vérifie.
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