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GEBRES 83

le revétement de SL,(X) défini par C. Moore et T. Kubota; on a une suite

exacte
{1} > p— S SLy(X) ~ {1}

et S est son propre groupe dérivé. Montrer que toute représentation K-linéaire
analytique du groupe de Lie S est triviale sur p; en déduire que SL, est
’enveloppe de S. (Si G est ’enveloppe de S, remarquer que la suite

est exacte (cf. exercice 5). Utiliser ensuite le fait que SL, est simplement
connexe.)

§5

1) Etendre la prop. 1 au cas d’un groupe compact K opérant continiiment
sur un espace vectoriel réel ¥V de dimension finie, chacune des opérations
de K étant polynomiale. (On montrera d’abord, au moyen du théoréme de
Baire, que le degré de ces opérations est borné.)

2) Soit H un sous-groupe algébrique réel de GL,. Montrer que H est
anisotrope si et seulement si il existe une forme quadratique positive non
dégénérée sur R” qui est invariante par H.

3) a) Soit G un groupe algébrique linéaire réel, et soit H un sous-groupe
algébrique distingué de G. On suppose que H et G/H sont anisotropes, et que
G/H est connexe. Montrer que G est anisotrope.

a b
b) On prend pour G le groupe des matrices de la forme ( b ) avec
-b a

(@>+b*)>=1 et pour H le sous-groupe de celles pour lesquelles
a*+ b*=1. Le groupe G/H s’identifie au groupe «constant» { =+ 1}.
Montrer que H et G/H sont anisotropes et que G ne I’est pas.

4) Avec les notations de la prop. 7, montrer que I’injection de V(R)
dans V(C) est une «équivalence d’homotopie». (Il suffit de voir que
T (V(R)) = 7;(V(C)) est un isomorphisme pour tout i; utiliser le lemme des
cing pour se ramener a ’énoncé analogue pour G et H.) [Exercice: donner
explicitement une «rétraction de déformation» de V(C) sur V(R).]

En particulier, la quadrique complexe d’équation ¥ zf = 1 a méme type

d’homotopie que ’ensemble de ses points réels: énoncer des résultats analogues
pour les variétés de Stiefel, etc.
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5) (Cet exercice pourrait remonter au chapitre III du livre de Lie.)

Soit A un groupe de Lie complexe, commutatif, connexe, d’algébre de
Lie a; soit A le noyau de exp:a — A, de sorte que A s’identifie a a/A.

a) Démontrer I’équivalence de: |
a;) L’application canonique C ® A — a est injective.
a,) A est isomorphe a un sous-groupe de Lie d’un (C*)".
az) A est isomorphe a un groupe (C*)? x C¢9.
a,) A posséde une représentation linéaire complexe fidele.
as) A posseéde une représentation linéaire complexe fidele semi-simple

d’image fermée.

b) Démontrer 1I’équivalence de:
b,) L’application C Q A — a est surjective.
b,) A est isomorphe a un quotient d’un groupe (C*)”.
bs3) Aucun facteur direct de A n’est isomorphe a C.

bs) Toute représentation linéaire complexe de A est semi-simple.
¢) Démontrer 1’équivalence de:
¢;) L’application C ® A — a est bijective.

c;) A est isomorphe a un (C*)”.

d) Soit F un sous-groupe fini de A, et soit A" = A/F. Montrer que A
vérifie les conditions a;) (resp. b;), ¢;)) si et seulement si A" les vérifie.
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