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GEBRES 79

[On obtient ainsi des bigébres sur C; a ces bigebres correspondent des
schémas en groupes; a ces schémas en groupes correspondent des groupes de
Lie complexes; & ces groupes... Voyez, voyez, la machine tourner!]

EXERCICES

§1

1) Soit E un K-module projectif de type fini. On identifie End(E) a
E ® E’; on note I I’élément de E ® E’ correspondant & 1g, et 7 son image
dans £’ ® E.

On munit £ ® E’ = End(E) de la structure de cogébre opposée a celle
définie au n° 1.1.

a) Six=a®a € EQE’', montrer que d(x) =a® IR a’.

b) On définit une application dg: E—=> End(E) Q E = EX E'® E par
a— a @ ‘I. Montrer que cette application définit sur £ une structure de
comodule a gauche sur End(E).

¢) On identifie End(F) ® End(E) a End(E® E) par [Papplica-
tion (u,v)~ u ® v. D’autre part, si on écrit End(£ Q E) sous la forme
EQREXE QE’" la permutation des deux facteurs E’ définit un auto-
morphisme ¢ de End(E & E). Montrer que ’on a

du) =cw®1g) si ueEndE).

d) Soit (v;) une base de E, et soit (E;; = v ; ® ;) la base correspondante
de End(E). Montrer que

dEj) = LE«QEy; .
k
e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogébre plate, et soit £ un comodule sur C.

a) Soit ¥V un K-module tel que E soit isomorphe (comme module) & un
quotient de E. Montrer qu’il existe un sous-comodule F de C ® V tel que E
soit isomorphe (comme comodule) & un quotient de F. (Utiliser le morphisme
C® V— CQ Eetlefait que E est isomorphe a un sous-comodule de C X E.)

Montrer que, si K est noethérien, et E de type fini, on peut choisir F de type
fini.
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b) On suppose que K est un anneau de Dedekind. Montrer que tout
comodule E de type fini est quotient d’un comodule F qui est projectif de type
fini. (Utiliser a) en prenant pour J un module libre de sorte que F soit sans
torsion.)

§2

1) Soit xe C tel que de(x) =x® x et e(x) =1. On note K, le
module K muni de la structure de comodule définie par

yrexy.
Prouver I’équivalence des propriétés suivantes:
a) K, est le seul objet simple de Com’; (a isomorphisme pres).
b) Toute sous-cogébre de C non réduite & 0 contient x.

¢) Le comodule C est extension essentielle du sous-comodule Kx (i.e. tout
sous-comodule de C différent de O contient Xx).

d) L’algebre profinie A duale de C est un anneau local d’idéal maximal
le noyau de I’homomorphisme a— <x,a> de A dans K.

[Noter que c) signifie ceci: le comodule C est /’enveloppe injective du
comodule simple Kx.]

§3

1) Avec les notations du n° 3.4, montrer sans utiliser la prop. 4
que la formule (iii) est conséquence des formules (i) et (ii).

2) Les notations étant celles du n°® 3.4, on suppose K parfait. Soit g
un automorphisme du foncteur v. Pour tout objet E de Com%, soit sg
(resp. ug) la composante semi-simple (resp. unipotente) de g(£). Montrer que
E— sp et E— ur sont des automorphismes du foncteur v. Si g vérifie
les relations (i) et (ii), montrer qu’il en est de m€me pour s et u. Déduire de
14 la décomposition des éléments de G(K) en produits d’éléments semi-simples
et unipotents commutant entre eux (dans le cas ou G est un schéma en
groupes).
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