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[On obtient ainsi des bigébres sur C; a ces bigebres correspondent des
schémas en groupes; a ces schémas en groupes correspondent des groupes de
Lie complexes; & ces groupes... Voyez, voyez, la machine tourner!]

EXERCICES

§1

1) Soit E un K-module projectif de type fini. On identifie End(E) a
E ® E’; on note I I’élément de E ® E’ correspondant & 1g, et 7 son image
dans £’ ® E.

On munit £ ® E’ = End(E) de la structure de cogébre opposée a celle
définie au n° 1.1.

a) Six=a®a € EQE’', montrer que d(x) =a® IR a’.

b) On définit une application dg: E—=> End(E) Q E = EX E'® E par
a— a @ ‘I. Montrer que cette application définit sur £ une structure de
comodule a gauche sur End(E).

¢) On identifie End(F) ® End(E) a End(E® E) par [Papplica-
tion (u,v)~ u ® v. D’autre part, si on écrit End(£ Q E) sous la forme
EQREXE QE’" la permutation des deux facteurs E’ définit un auto-
morphisme ¢ de End(E & E). Montrer que ’on a

du) =cw®1g) si ueEndE).

d) Soit (v;) une base de E, et soit (E;; = v ; ® ;) la base correspondante
de End(E). Montrer que

dEj) = LE«QEy; .
k
e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogébre plate, et soit £ un comodule sur C.

a) Soit ¥V un K-module tel que E soit isomorphe (comme module) & un
quotient de E. Montrer qu’il existe un sous-comodule F de C ® V tel que E
soit isomorphe (comme comodule) & un quotient de F. (Utiliser le morphisme
C® V— CQ Eetlefait que E est isomorphe a un sous-comodule de C X E.)

Montrer que, si K est noethérien, et E de type fini, on peut choisir F de type
fini.
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b) On suppose que K est un anneau de Dedekind. Montrer que tout
comodule E de type fini est quotient d’un comodule F qui est projectif de type
fini. (Utiliser a) en prenant pour J un module libre de sorte que F soit sans
torsion.)

§2

1) Soit xe C tel que de(x) =x® x et e(x) =1. On note K, le
module K muni de la structure de comodule définie par

yrexy.
Prouver I’équivalence des propriétés suivantes:
a) K, est le seul objet simple de Com’; (a isomorphisme pres).
b) Toute sous-cogébre de C non réduite & 0 contient x.

¢) Le comodule C est extension essentielle du sous-comodule Kx (i.e. tout
sous-comodule de C différent de O contient Xx).

d) L’algebre profinie A duale de C est un anneau local d’idéal maximal
le noyau de I’homomorphisme a— <x,a> de A dans K.

[Noter que c) signifie ceci: le comodule C est /’enveloppe injective du
comodule simple Kx.]

§3

1) Avec les notations du n° 3.4, montrer sans utiliser la prop. 4
que la formule (iii) est conséquence des formules (i) et (ii).

2) Les notations étant celles du n°® 3.4, on suppose K parfait. Soit g
un automorphisme du foncteur v. Pour tout objet E de Com%, soit sg
(resp. ug) la composante semi-simple (resp. unipotente) de g(£). Montrer que
E— sp et E— ur sont des automorphismes du foncteur v. Si g vérifie
les relations (i) et (ii), montrer qu’il en est de m€me pour s et u. Déduire de
14 la décomposition des éléments de G(K) en produits d’éléments semi-simples
et unipotents commutant entre eux (dans le cas ou G est un schéma en
groupes).
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Utiliser le méme procédé pour obtenir la décomposition des éléments de
’algébre de Lie de G en sommes d’éléments semi-simples et nilpotents
commutant entre eux.

[Cette décomposition n’a en fait rien a voir avec les bigeébres. On aurait
pu la donner au §2.]

3) On suppose que G = Spec(C) est un schéma en groupes. Prouver
I’équivalence des propriétés suivantes:

a) Tout G-module simple est isomorphe au G-module trival K.
b) G est limite projective de groupes algébriques linéaires unipotents.

¢) Si Ee€ Comé, K, € Algg, et u € Gg(K,), I’élément u est unipotent.

4) On suppose K de caractéristique zéro. Montrer que la catégorie des
G-modules semi-simples vérifie les conditions du corollaire & la prop. 3,
donc correspond a un quotient H de G. Montrer que I’on peut caractériser H
comme le plus grand quotient de G qui soit réductif (i.e. limite projective de
groupes algébriques linéaires réductifs, au sens usuel).

§4

1) On prend K = C. Le groupe additif I' = C est considéré comme
un groupe de Lie complexe. Soit G son enveloppe, et soit C la bigebre
correspondante.

a) Montrer qu’une fonction f(z) sur I appartient a C si et seulement si
c’est une exponentielle-polynéme, i.e. si elle est combinaison linéaire de
fonctions de la forme z"7e*?, avec n € N, A € C.

b) Montrer que C est produit tensoriel de la bigébre formée des polyndmes,
et de la bigebre formée des combinaisons linéaires d’exponentielles. Interpréter
cette décomposition comme une décomposition de I’enveloppe G en produit
du groupe additif G, et d’un groupe de type multiplicatif M dual du groupe
abélien C. En particulier, G n’est pas algébrique.

2) Comment faut-il modifier ’exercice précédent lorsque K = R et

I' = R? (La partie «tore» de G n’est plus déployée; son dual est C, muni de
la conjugaison complexe.)

(Dans les deux exercices ci-aprés, on se permet d’identifier un groupe
profini I" 4 son enveloppe relativement a la catégorie des I'-modules & noyau
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ouvert. Cela revient a identifier un groupe fini au groupe algébrique
«constant» de dimension 0 qui lui est associé.)

3) Soit K = Q,, et soit H un groupe algébrique semi-simple simplement
connexe sur K. Soit I' un sous-groupe ouvert compact du groupe H(Q,).
Montrer que ’enveloppe du groupe topologique I' est H X I'. (Le second
facteur est identifié au schéma en groupes correspondant, cf. ci-dessus.)

4) Soient K = Q et I" = SL,(Z), n > 3. On prend pour L la catégorie de
toutes les représentations linéaires de I' sur Q de rang fini. Montrer que
’enveloppe de T est SL, X [] SL,(Z,), le second facteur étant identifié¢ & un

p
schéma en groupes comme on I’a expliqué ci-dessus. (Utiliser le th. 16.2,
p. 497, des Publ. IHES, 1967, combiné avec le fait que tout sous-groupe
d’indice fini de I' contient un «groupe de congruence».)

5) Soit K un corps complet pour une valuation discréte v. On note A
(resp. m) I’anneau (resp. I’idéal maximal) de v, et ’on note p la caractéristique
du corps A/m. On suppose p # 0 et car(K) = 0.

a) Soit x € K*. Supposons qu’il existe un entier d tel que, pour tout n > 0,
il existe une extension K, de K de degré d et un élément y € K,, tel que
yP" = x. Montrer que v(x) = 0. Montrer que, si x =1 (mod m), on a x = 1.
(Se ramener au cas ou toutes les racines p”-emes de x appartiennent au
corps K.)

b) Soit f: K = GL,(K) un homomorphisme K-analytique. Montrer que f
est «algébrique», i.e. qu’il existe une matrice nilpotente u telle que
f(t) = exp(tu) pour tout ¢t € K. (Appliquer a) aux valeurs propres de f(¢),
avec d = n; en conclure que f(¢) est unipotent pour tout ¢.)

¢) Déduire de b) que I’enveloppe du groupe de Lie K est le groupe additif
G, (relativement a K).

d) Etendre b) et ¢) aux groupes algébriques unipotents sur K (écrire les
éléments de ces groupes comme produits de groupes a un parametre). Méme
chose pour les groupes semi-simples déployés. [Il est probable que le résultat
reste vrai pour les groupes semi-simples n’ayant aucun facteur simple
anisotrope.]

e) Montrer que les résultats de b) et ¢) ne s’étendent pas aux groupes de
type multiplicatif.

6) Soit K un corps localement compact ultramétrique de caracté-
ristique O et soit p le groupe des racines de I’unité contenues dans K. Soit S
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le revétement de SL,(X) défini par C. Moore et T. Kubota; on a une suite

exacte
{1} > p— S SLy(X) ~ {1}

et S est son propre groupe dérivé. Montrer que toute représentation K-linéaire
analytique du groupe de Lie S est triviale sur p; en déduire que SL, est
’enveloppe de S. (Si G est ’enveloppe de S, remarquer que la suite

est exacte (cf. exercice 5). Utiliser ensuite le fait que SL, est simplement
connexe.)

§5

1) Etendre la prop. 1 au cas d’un groupe compact K opérant continiiment
sur un espace vectoriel réel ¥V de dimension finie, chacune des opérations
de K étant polynomiale. (On montrera d’abord, au moyen du théoréme de
Baire, que le degré de ces opérations est borné.)

2) Soit H un sous-groupe algébrique réel de GL,. Montrer que H est
anisotrope si et seulement si il existe une forme quadratique positive non
dégénérée sur R” qui est invariante par H.

3) a) Soit G un groupe algébrique linéaire réel, et soit H un sous-groupe
algébrique distingué de G. On suppose que H et G/H sont anisotropes, et que
G/H est connexe. Montrer que G est anisotrope.

a b
b) On prend pour G le groupe des matrices de la forme ( b ) avec
-b a

(@>+b*)>=1 et pour H le sous-groupe de celles pour lesquelles
a*+ b*=1. Le groupe G/H s’identifie au groupe «constant» { =+ 1}.
Montrer que H et G/H sont anisotropes et que G ne I’est pas.

4) Avec les notations de la prop. 7, montrer que I’injection de V(R)
dans V(C) est une «équivalence d’homotopie». (Il suffit de voir que
T (V(R)) = 7;(V(C)) est un isomorphisme pour tout i; utiliser le lemme des
cing pour se ramener a ’énoncé analogue pour G et H.) [Exercice: donner
explicitement une «rétraction de déformation» de V(C) sur V(R).]

En particulier, la quadrique complexe d’équation ¥ zf = 1 a méme type

d’homotopie que ’ensemble de ses points réels: énoncer des résultats analogues
pour les variétés de Stiefel, etc.
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5) (Cet exercice pourrait remonter au chapitre III du livre de Lie.)

Soit A un groupe de Lie complexe, commutatif, connexe, d’algébre de
Lie a; soit A le noyau de exp:a — A, de sorte que A s’identifie a a/A.

a) Démontrer I’équivalence de: |
a;) L’application canonique C ® A — a est injective.
a,) A est isomorphe a un sous-groupe de Lie d’un (C*)".
az) A est isomorphe a un groupe (C*)? x C¢9.
a,) A posséde une représentation linéaire complexe fidele.
as) A posseéde une représentation linéaire complexe fidele semi-simple

d’image fermée.

b) Démontrer 1I’équivalence de:
b,) L’application C Q A — a est surjective.
b,) A est isomorphe a un quotient d’un groupe (C*)”.
bs3) Aucun facteur direct de A n’est isomorphe a C.

bs) Toute représentation linéaire complexe de A est semi-simple.
¢) Démontrer 1’équivalence de:
¢;) L’application C ® A — a est bijective.

c;) A est isomorphe a un (C*)”.

d) Soit F un sous-groupe fini de A, et soit A" = A/F. Montrer que A
vérifie les conditions a;) (resp. b;), ¢;)) si et seulement si A" les vérifie.




	Exercices
	§1
	§2
	§3
	§4
	§5


