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76 J.-P. SERRE

5.5. Groupes de Lie complexes réductifs
Théorème 5. Soient H un groupe de Lie complexe, H° sa composante

neutre et jf) son algèbre de Lie. Les conditions suivantes sont
équivalentes:

(i) H/H° est fini; b est réductive; la composante neutre du centre
de H° est isomorphe à un produit de groupes C*.

(ii) H/H° est fini; toute représentation linéaire complexe de H est

semi-simple; il existe une telle représentation qui est fidèle.

(iii) H/H° est fini; si K est un sous-groupe compact maximal de H,
et f son algèbre de Lie, on a b f © if.

(iv) Il existe un groupe de Lie compact K tel que H soit isomorphe
au complexifié de K.

(v) Il existe un groupe algébrique linéaire sur C qui est réductif, et dont
le groupe des points est isomorphe à H (comme groupe de Lie complexe).

Démonstration. L'équivalence (iv) & (v) résulte des ths. 3 et 4. • Le

fait que (iv) =» (iii) résulte de la décomposition de Cartan de H. Inversement,

supposons (iii) vérifiée, soit G l'enveloppe de K, et soit G(C) le complexifié
de K. L'injection K ^ H se prolonge en un morphisme / : G(C) H de

groupes de Lie complexes. Vu que b f © zf, f est un isomorphisme local.
De plus, K est un sous-groupe compact maximal à la fois de G(C) et de H
et la restriction de f ä K est l'identité (modulo les identifications faites). Cela

entraîne que / est un isomorphisme, en vertu du lemme suivant:

Lemme 4. Soit f : A -> B un homomorphisme de groupes de Lie réels.

On suppose:

a) que f est un isomorphisme local;

b) que A et B ont un nombre fini de composantes connexes;

c) qu'il existe un sous-groupe compact maximal KA (resp. KB) de A
(resp. de B) tel que la restriction de f à KA soit un isomorphisme de

Ka sur Kb

Alors f est un isomorphisme.

Démonstration du lemme 4. On sait que B possède une décomposition

multiexponentielle B KB. exp(pi) ••• exp(pn), où les pt sont des sous-

espaces vectoriels de l'algèbre de Lie b de B. Cela permet de définir une section

h: B A par

£. exp^j)... exp(6j ^ k'. exp(^)... exp(^)
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où k' désigne l'image réciproque de k dans KA et t[,..., t'n les éléments de

l'algèbre de Lie de A relevant tu ...,4. L'image de h est une réunion de

composantes connexes de A; comme elle contient KJ4, c'est A tout entier;

d'où le lemme.

On a donc prouvé l'équivalence (iii) & (iv).

L'implication (v) => (i) est immédiate: on sait en effet que tout groupe

réductif connexe est extension d'un groupe semi-simple par un groupe de type

multiplicatif. Inversement, montrons que (i) => (iii) (ce qui prouvera que (i)

est équivalent à (iii), (iv), (v)). On peut supposer H connexe. Si Z désigne la

composante neutre du centre de H, et S son groupe dérivé, S n Z est un groupe

discret, qui est le centre de S. Or on a:

Lemme 5. Le centre d'un groupe de Lie complexe, connexe, d'algèbre de

Lie semi-simple, est fini.
Il suffit de voir que le groupe fondamental du groupe adjoint est fini. Or

le groupe adjoint admet une décomposition de Cartan K.P, avec K compact
semi-simple connexe (cf. rédaction numéro 517); son groupe fondamental est

le même que celui de K, et ce dernier est fini d'après un théorème bien connu
d'Int. (chap. VII, §3, prop. 5).

Ceci étant, on voit que 5 n Z est fini, donc que H admet pour revêtement

fini le produit S x Z. Pour vérifier que H jouit de la propriété (iii), il suffit
de le faire pour son revêtement S x Z, c'est-à-dire pour S et pour Z. Le cas

de Z est trivial (puisqu'on l'a supposé isomorphe à (C*)n); pour S, on

remarque que, d'après le lemme 5, son centre est fini, et l'on est ramené au
cas du groupe adjoint; mais ce dernier est évidemment «algébrique»,
i.e. vérifie (v), donc aussi (iii).

Reste à démontrer que (ii) est équivalente aux quatre autres propriétés. Tout
d'abord, on a (iv) => (ii); en effet, si H est le complexifié de K, et si E est une
représentation linéaire complexe de H, les sous-espaces de E stables par K le

sont aussi par H, ce qui montre que E est semi-simple; de même, le fait que
K ait une représentation linéaire fidèle montre que H en possède une.

Enfin, supposons (ii) vérifiée. L'existence d'une représentation semi-simple
et fidèle de H montre que f) est réductive (car la représentation de f) correspondante

est aussi semi-simple et fidèle). D'autre part, H° vérifie aussi (ii) (le
seul point non évident est que toute représentation linéaire p de H° soit semi-
simple; cela se voit en remarquant que la représentation linéaire induite (au
sens Frobenius!) de p est semi-simple). Si Z désigne la composante neutre
du centre de H et S le groupe dérivé de H, on voit comme ci-dessus que S n Z
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est un groupe fini F. On a un homomorphisme surjectif H-* Z/F\ le groupe
Z/F est donc un groupe commutatif, connexe, dont toutes les représentations
linéaires sont semi-simples; de plus, Z possède une représentation linéaire
fidèle. Il en résulte facilement (cf. exercice 5) que Z est isomorphe à (C*)".
On a donc (ii) => (i), ce qui achève la démonstration.

[Cette démonstration n'est en fait qu'une simple vérification: tout le travail
sérieux a déjà été fait. On devrait pouvoir la présenter plus simplement.]

Définition 2. Un groupe de Lie complexe qui vérifie les propriétés
équivalentes du th. 5 est dit réductif

Théorème 6. Soit H un groupe de Lie complexe réductif. Soit G

son enveloppe complexe (en tant que groupe de Lie complexe, cf. n° 4.3).
Alors G est un groupe algébrique linéaire complexe réductif (au sens

algébrique) et Vapplication canonique HG(C) est un isomorphisme.

Soit K un sous-groupe compact maximal de H; puisque H est le complexifié
de K, les représentations linéaires complexes (holomorphes) de H
correspondent bijectivement (par restriction) à celles de K. Il s'ensuit que le

groupe G en question n'est autre que l'enveloppe complexe GK/C de K, d'où
le théorème.

Corollaire 1. Soient Gx et G2 deux groupes algébriques linéaires

complexes, et soit f: GX{C) -* G2(C) un homomorphisme de groupes de

Lie complexes. Si Gx est réductif f est «algébrique» (i.e. induit par un
morphisme Gx -* G2).

Cela ne fait que traduire le th. 6.

Corollaire 2. Le fondeur «enveloppe» est une équivalence de la

catégorie des groupes de Lie complexes réductifs sur celle des groupes
algébriques linéaires réductifs.

C'est clair.

Remarque. Soit K un sous-groupe compact maximal de G(C), où G est

algébrique linéaire réductif sur C. On peut résumer ce qui précède ainsi:

l'algèbre affine de G s'identifie à l'algèbre des fonctions holomorphes sur G(C)
dont les translatées engendrent un espace vectoriel de dimension finie; par
restriction à K, cette algèbre s'applique isomorphiquement sur l'algèbre des

fonctions continues complexes sur K dont les translatées engendrent un espace

vectoriel de dimension finie.
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[On obtient ainsi des bigèbres sur C; à ces bigèbres correspondent des

schémas en groupes; à ces schémas en groupes correspondent des groupes de

Lie complexes; à ces groupes... Voyez, voyez, la machine tourner!]

Exercices

§1

1) Soit E un Z-module projectif de type fini. On identifie End (2s) à

E 0 Ef; on note / l'élément de E 0 E' correspondant à \E, et son image

dans E' ® E.
On munit E 0 E' End (is) de la structure de cogèbre opposée à celle

définie au n° 1.1.

a) Si x a 0 a' e E 0 2s", montrer que d(x) a 0 lI 0 a'.

b) On définit une application dE: E -+ End (is) ®E E®E'®E par
a a (x) '/. Montrer que cette application définit sur E une structure de

comodule à gauche sur End(£").

c) On identifie End(jE) (x) End(iT) à End(2i (x) E) par l'application

(u,v)^> u ® v. D'autre part, si on écrit End(is (x) E) sous la forme
E (x) E 0 E' (x) E" la permutation des deux facteurs E' définit un auto-
morphisme a de End (is (x) is). Montrer que l'on a

c/(w) o(u 0 1^) si u e End(is)

d) Soit (Vj) une base de E, et soit {Etj v'j 0 i»/) la base correspondante
de End^). Montrer que

d(E,j) Y,Eik®EkJ.
k

e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogèbre plate, et soit E un comodule sur C.

a) Soit V un /f-module tel que E soit isomorphe (comme module) à un
quotient de E. Montrer qu'il existe un sous-comodule de C F tel que E
soit isomorphe (comme comodule) à un quotient de (Utiliser le morphisme
C0 V-+ C® Eetle fait que E est isomorphe à un sous-comodule de C ® E.)
Montrer que, si K est noethérien, et E de type fini, on peut choisir de type
fini.
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