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GÈBRES 75

Remarque. Le th. 4 équivaut à dire que Y enveloppe de K est une «forme

réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H{C),

— formes réelles anisotropes de H.

En particulier, ces dernières sont conjuguées entre elles par les éléments

de H(C) (et même par ceux de H°{C), H° désignant la composante neutre

de H).

5.4. Retour aux groupes anisotropes

Proposition 7. Soit G un groupe algébrique linéaire réel anisotrope,

et soit H un sous-groupe algébrique de G. Soit V G/H l'espace

homogène correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L'application canonique G(R) -> L(R) est surjective (de sorte qu'on
peut identifier V(R) à G(R)/if(R)).

c) Si H est distingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g h» g du th. 2 laisse évidemment stable

le sous-groupe H{C) de G(C). Comme H(C) est «de type algébrique», on en

conclut que H(C) admet lui-même une décomposition de Cartan K.P, où

K H(C) n G(R) H(R). Mais alors il est clair que l'adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est

anisotrope, d'où a).

Soit maintenant v e L(R); soit g e G(C) un élément dont l'image dans

V(C) G(C)/H(C) est v. On a g g mod H{C). Soit K{ .Px la décomposition

de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g kiPi, avec kx e Ku px e P{. L'hypothèse g g mod H{C) signifie qu'il
existe k e K et p e P tels que g gkp, i.e. kxpx kxp^lkp, d'où p\ kp,
ce qui entraîne k 1, p p\. Comme P est stable par extraction de racines
carrées, on a a e P. On en conclut que g kx mod H(C), donc que v est

l'image de l'élément k{ e G(R), ce qui prouve b).
Enfin, si H est distingué, il est clair que l'image de Kx dans (G/H) (R) est

dense pour la topologie de Zariski de G/H; or cette image est un compact,
d'où etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sûr, dans le cas où H est

connexe, qui est trivial.]
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