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T2 - J.-P. SERRE

5.3. L’ENVELOPPE COMPLEXE D’UN GROUPE COMPACT

Soit K un groupe compact. Soit L¢ la catégorie des représentations
linéaires complexes continues de rang fini de K. Cette catégorie est saturée (le
corps de base étant maintenant C). Nous noterons G,¢c et C,c le schéma en
groupes et la bigebre correspondants, et nous dirons que G, ¢ est [’enveloppe
complexe de K. D’apres le n°® 4.3, une fonction complexe f sur K appartient
a C,c si et seulement si elle vérifie les conditions suivantes:

a’) Les translatées de f engendrent un espace vectoriel de rang fini.
b’) f est continue.

En comparant avec les conditions a) et b) du n® 5.2, on voit que cela signifie
que la partie réelle et la partie imaginaire de f appartiennent a la bigebre C
de G. On a donc

C/ic=CQ®rC

et le groupe G,c est le schéma en groupes déduit de G par extension des
scalaires de R a C. En particulier, le groupe G,c(C) de ses points
complexes peut étre identifié a G(C).

Noter que la conjugaison complexe définit une involution g — g de G(C),
dont I’ensemble des invariants est G(R) = K. Plus précisément:

THEOREME 2. Supposons que K soit un groupe de Lie compact, et
soit t son algébre de Lie. Alors g g est une involution de Cartan forte
(cf. réd. n° 517) du groupe de Lie G(C). Les facteurs de la décomposition
de Cartan correspondante sont K et P = exp(if), de sorte que
G(C) =K.P.

Démonstration

a) On va d’abord vérifier le th. 2 dans le cas particulier du groupe
orthogonal G, = 0,. On a G;(R) = 0,(R), G,(C) = 0,(C), et ’on sait que
gt g est une décomposition de Cartan forte de O,(C) dont I’ensemble des
invariants est K; = 0,(R). Cette décomposition montre en méme temps que
K, est dense dans O, (C) pour la topologie de Zariski, donc que O, est ’enve-
loppe de K.

b) Passons au cas général. On choisit un plongement de K dans un groupe
orthogonal K; = 0,(R); I’enveloppe G de K s’identifie alors & un sous-
groupe algébrique de O,, a savoir ’adhérence de K (pour la topologie de
Zariski). Le groupe G(C) est donc un sous-groupe de G;(C), stable par
P’involution de Cartan considérée. Comme c’est un sous-groupe «de type
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algébrique, il en résulte (cf. réd. 517, p. 48, prop. 3) que la restriction de
g+ F A ce sous-groupe est bien une décomposition de Cartan forte. On
sait déja que le sous-groupe de ses invariants est K. D’autre part, ’algébre de
Lie de G(C) est C ® f, et automorphisme de C & { induit par gt g est la
conjugaison complexe; on en déduit que le facteur P correspondant est bien
exp (if), c.q.f.d.

Remarques

1) Lorsque K est un groupe compact quelconque, on peut I’écrire comme
limite projective de groupes de Lie compacts K, et 'on a G(C) = lgn G.(O),
avec des notations évidentes. D’aprés le th. 2, chaque G,(C) a une décompo-
sition de Cartan K,.P,, avec P, = exp(if,). Finalement, on obtient une
décomposition de G(C) sous la forme G(C) = K .exp(if), en notant f la limite
projective des f,.

[Cette décomposition ne semble présenter aucun intérét en dehors du cas
ou K est un groupe de Lie. Noter que G(C) n’est méme pas localement
compact, si dim(K) = oo.}

2) A la place du groupe O,(R), on aurait pu utiliser le groupe unitaire
U,(C), plus traditionnel. Toutefois, il aurait fallu expliquer comment on
considére U, comme un groupe algébrique sur R, et pourquoi U, ¢ s’identifie
a GL,/c- _

THEOREME 3. Les hypothéses étant celles du th. 2, soit X un groupe
de Lie complexe, et soit f un homomorphisme continu de K dans X.
Il existe alors un homomorphisme F:G(C)—> X de groupes de Lie
complexes, et un seul, qui prolonge f.

Soit K¢ le groupe de Lie complexifié de K, au sens de la rédaction 515,
§6, n° 10 [il faut modifier la rédaction en question, car elle suppose, bien
inutilement, que le groupe de Lie réel dont on part est connexe]. On a un
homomorphisme canonique n: K- = G(C), et le th. 3 équivaut a dire que =«
est un isomorphisme.

Il est clair en tout cas que = est surjectif; d’autre part, on sait (loc. cit.)
que ’algebre de Lie de K¢ est engendrée sur C par f; puisque celle de G(C)
est f @ C, on en conclut que © est un revétement. Ce revétement admet une
section canonique G(C) = K.P — K¢ définie par x.exp(it) — x'.exp(it’)
ou x désigne un élément de K, x’ son image par K — K, ¢ désigne un élément
de if et ¢" son image par ’application tangente & K - K.. L’image de cette
section est K'.P’, avec des notations évidentes; c’est une réunion de

composantes connexes de Kc. De plus, c’est un sous-groupe en vertu du
lemme suivant:
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LEMME 3. Soit A un groupe topologique, soit B un sous-groupe
de A, et soit C la réunion des composantes connexes de A qui
rencontrent B. Alors C est un sous-groupe de A.

Si x, y € C, il existe des parties connexes X, Y de A qui rencontrent B et
sont telles que x € X,y € Y. Alors X.Y ! est une partie connexe de A
rencontrant B et contenant xy~!; on a donc xy~! € C, ce qui prouve bien
que C est un sous-groupe.

Le théoreme 3 est maintenant évident. En effet, on vient de voir que K’ . P’
est un sous-groupe ouvert de K¢; comme il contient K’, il est nécessairement
égal a K¢ et la projection 7 est bien un isomorphisme.

Exemple. Prenons pour K le cercle S;, de sorte que G(C) = C*. Soit H
un groupe de Lie complexe compact connexe de dimension 1 [d’aucuns
appellent ¢ca une courbe elliptique]; en tant que groupe de Lie réel, H est un
tore de dimension 2. Choisissons un plongement f de S; dans H. D’apres le
th. 3, f se prolonge en un homomorphisme F:C* - H. Il est immédiat
que F est un revétement, et que son noyau est formé des puissances d’un
élément g € C*, avec |g|< 1; on peut donc identifier H & C*/gZ [Tate
devrait étre content].

Si K est un groupe de Lie compact, il est clair que son enveloppe G est
un groupe réductif (puisque toutes ses représentations linéaires sont semi-
simples), donc G,¢ est un groupe réductif complexe. Inversement:

THEOREME 4. Soit H un groupe algébrique linéaire complexe réductif,
et soit K un sous-groupe compact maximal de H(C). L’enveloppe
complexe de K s’identifie a H.

Soit § ’algébre de Lie de H, et soit f celle de K. On va d’abord prouver
que ) = f @ if, et qu’il existe une décomposition de Cartan de H(C) dont les
facteurs sont K et exp(if).

Il suffit de le faire lorsque H est connexe, puis (quitte a passer a un
revétement) lorsque H est, soit un tore, soit un groupe semi-simple. Le premier
cas est trivial. Le second a été traité dans la rédaction 517, §3 (en se ramenant
au cas adjoint et en utilisant I’existence d’une forme réelle de §) dont la forme
de Killing est négative).

Ceci étant, si G est I’enveloppe complexe de K, il est clair que le morphisme
canonique G — H donne lieu a un homomorphisme G(C) = H(C) qui est un
isomorphisme. C’est donc un isomorphisme.
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Remarque. Le th. 4 équivaut & dire que ’enveloppe de K est une « forme
réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H(C),
— formes réelles anisotropes de H.

En particulier, ces derniéres sont conjuguées entre elles par les éléments
de H(C) (et méme par ceux de H°(C), H° désignant la composante neutre
de H).

5.4. RETOUR AUX GROUPES ANISOTROPES

PROPOSITION 7. Soit G un groupe algébrique linéaire réel anisotrope,
et soit H un sous-groupe algébrique de G. Soit V = G/H [’espace
homogéne correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L’application canonique G(R) — V(R) est surjective (de sorte qu’on
peut identifier V(R) a G(R)/H(R)).

¢) Si H estdistingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g g du th. 2 laisse évidemment stable
le sous-groupe H(C) de G(C). Comme H(C) est «de type algébrique», on en
conclut que H(C) admet lui-méme une décomposition de Cartan K.P, ou
K = H(C) n G(R) = H(R). Mais alors il est clair que adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est
anisotrope, d’ou a).

Soit maintenant v € V(R); soit g € G(C) un élément dont I’image dans
V(C) = G(C)/H(C) est v. On a g = g mod H(C). Soit K;.P; la décompo-
sition de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g = kip:, avec k; € K, p; € P;. L’hypothése g = g mod H(C) signifie qu’il
existe k € K et p € P tels que g = gkp, i.e. kip; = klpl_lkp, d’ou pf = kp,
ce qui entraine Kk =1, p = pf . Comme P est stable par extraction de racines
carrées, on a p; € P. On en conclut que g = k; mod H(C), donc que v est
I’image de I’élément k; € G(R), ce qui prouve b).

Enfin, si H est distingué, il est clair que I’image de K, dans (G/H) (R) est
dense pour la topologie de Zariski de G/H; or cette image est un compact,
d’ou etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sfir, dans le cas ou H est
connexe, qui est trivial.]
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