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5.2. L'enveloppe d'un groupe compact

Soit K un groupe compact. Considérons la catégorie L des représentations
linéaires continues réelles de rang fini de K. Cette catégorie est saturée

(cf. n° 4.3). Nous noterons G le schéma en groupes correspondant (sur R)
et C sa bigèbre. On dit que G est l'enveloppe de K, cf. n° 4.3, exemple b).
Rappelons (loc. cit.) qu'une fonction réelle / sur K appartient à C si et
seulement si elle vérifie les deux conditions suivantes:

a) Les translatées de / (à gauche, par exemple) engendrent un espace
vectoriel réel de rang fini.

b) / est continue.

Rappelons également que l'on a défini un homomorphisme canonique

K G(R)

Théorème 1. L'homomorphisme K^G(R) est un isomorphisme.

L'injectivité résulte du théorème de Peter-Weyl, que l'on admet.
Pour prouver la surjectivité, écrivons G comme limite projective des

groupes algébriques GE attachés aux éléments de L (cf. n° 4.3). On a
évidemment

G(R) lim. Ge(R)

D'autre part, d'après la prop. 2, tous les homomorphismes

K~*Ge(R)

sont surjectifs. Il en est donc de même (grâce à la compacité) de
K ->• lim. Ge(R), d'où le théorème.

Proposition 3. Soit E e L. Pour que E soit une représentation
fidèle de K (au sens usuel, i.e. le noyau de K -> Aut(E) doit être réduit à
{1}), il faut et il suffit que E soit fidèle comme C-comodule (cf. n° 3.5).

Si E est fidèle comme comodule, G s'identifie à GE, donc K s'identifie à
Ge(R) et il est clair que E est fidèle comme représentation de K.

La réciproque provient de ce qui a été démontré au n° 3.5, combiné avec
le lemme suivant:

Lemme 2 (Burnside). SiE est fidèle, toute représentation irréductible
continue de K est un facteur d'une représentation (g) E, avec ^ 0
convenable.
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Soit F une telle représentation, et soit % le caractère d'une composante
irréductible de C (x) F. Si F n'était facteur d'aucune puissance tensorielle de

E, les formules d'orthogonalité des coefficients de représentations
montreraient que % est orthogonal à tous les polynômes en les coefficients cu de

la représentation E. Comme ces polynômes sont denses dans l'espace des

fonctions continues sur K, on aurait % 0, ce qui est absurde.

[Il n'est probablement pas nécessaire d'utiliser les relations
d'orthogonalité. Peu importe.]

Remarque. L'analogue du lemme 2 dans le cas complexe est vrai, à
n n v

condition de remplacer ® E par (g) {E © E). La démonstration est

essentiellement la même. [Dans le cas réel, l'existence d'une forme quadratique non
V

dégénérée invariante montre que E est isomorphe à E; c'est pour cela que
V

l'on a pu se débarrasser de E.]

Corollaire. Lorsque E est fidèle, l'enveloppe de K s'identifie au

groupe Ge

Cela ne fait que reformuler la proposition.

Proposition 4. Pour que G soit algébrique, il faut et il suffit que K
soit un groupe de Lie.

Si K est un groupe de Lie, le théorème de Peter-Weyl montre qu'il admet

une représentation fidèle E; on a alors G GE d'après le corollaire ci-dessus,

et G est donc algébrique. Inversement, si G est algébrique, il est clair que

K G(R) est un groupe de Lie.

Définition 1. Un groupe algébrique linéaire réel H est dit anisotrope

s'il vérifie les deux conditions suivantes:

a) H(R) est compact.

b) H(R) est dense pour la topologie de Zariski de H.

(Comme H(R) contient un voisinage de 1 dans H, la condition b) équivaut à

la suivante:

b') Toute composante connexe (au sens algébrique) de H contient un

point réel.

En particulier, b) est vérifiée si H est connexe.)

Exemples

1) Un groupe semi-simple connexe est anisotrope si et seulement si la

forme de Killing de son algèbre de Lie est négative.



GÈBRES 71

2) Un groupe de type multiplicatif (non nécessairement connexe) est

anisotrope si et seulement si tout homomorphisme de ce groupe dans le groupe

multiplicatif Gm est trivial ou d'ordre 2. (La conjugaison complexe opère

donc par x ^ X"1 sur le groupe dual.)

Proposition 5. Soit H un groupe algébrique linéaire réel, et soit K
un sous-groupe compact de H(R) dense pour la topologie de Zariski. Alors

H est anisotrope, on a K H{R) et H s'identifie à l'enveloppe de K.

Le fait que H soit l'enveloppe de K résulte du corollaire à la prop. 3.

On en déduit que K H(R), donc que H est anisotrope.

Corollaire. Soit H' un groupe algébrique linéaire réel, et soit cp un

homomorphisme continu de K dans H'{R). Il existe alors un morphisme

f:H-+ H' et un seul qui prolonge cp.

Cela ne fait que traduire le fait que H est l'enveloppe de K.

Remarque. Il est essentiel de supposer que H' est linéaire (prendre

pour K un cercle, et pour H' une courbe elliptique!).

Proposition 6. Le Joncteur «enveloppe» est une équivalence de la

catégorie des groupes de Lie compacts sur celle des groupes algébriques

linéaires réels anisotropes.

C'est clair.

Remarques

1) Le foncteur «enveloppe» jouit des propriétés explicitées au n° 4.3.

En particulier, les éléments de G(R) K peuvent être interprétés comme les

automorphismes du foncteur «espace vectoriel sous-jacent» commutant au

produit tensoriel et triviaux pour le module trivial R. [Ce n'est pas tout à fait
le théorème de dualité de Tannaka, car ce dernier est relatif à des représentations

complexes unitaires, et à des automorphismes unitaires. Il devrait y
avoir moyen de passer de l'un à l'autre. Au concours!]

2) Si K est un groupe de Lie compact, il n'y a pas lieu de distinguer entre

son enveloppe en tant que groupe topologique, ou en tant que groupe de Lie
réel, puisque toute représentation linéaire continue d'un groupe de Lie réel est

analytique. En particulier, les éléments de la bigèbre de K sont des fonctions
analytiques sur K.
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