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GÈBRES 67

b) Supposons que K soit un corps topologique (resp. un corps valué

complet non discret) et que F soit muni d'une structure de groupe topologique

(resp. de groupe de Lie sur K). On peut prendre pour L la catégorie des

représentations continues (resp. K-analytiques) de rang fini. Une fonction

f e C appartient à la bigèbre Cl correspondante si et seulement si elle est

continue (resp. analytique): cela se vérifie sans difficulté. Le schéma GL est

appelé simplement l'enveloppe du groupe topologique F (resp. du groupe de

Lie T). On peut le caractériser par la propriété universelle suivante: si H est

un groupe algébrique linéaire, tout homomorphisme continu (resp. analytique)
de T dans le groupe topologique (resp. de Lie) H(K) se prolonge de façon

unique en un morphisme de GL dans H. Cela résulte simplement de la

description de CL donnée ci-dessus.

On notera que, même lorsque F est un groupe de Lie connexe de dimension

finie, son enveloppe n'est pas en général un groupe algébrique (i.e. GL ne

possède en général pas de module fidèle, cf. exercice 1).

c) Soit k un corps complet pour une valuation discrète; on suppose k
d'inégale caractéristique et de corps résiduel algébriquement clos. Soit k une
clôture algébrique de k et soit F Gal(k/k). Prenons pour K le corps Qp

(p étant la caractéristique résiduelle de k), et pour L la catégorie des

(^-représentations de F qui ont une «décomposition de Hodge» au sens de

Tate (Driebergen). La catégorie L est saturée. Le groupe GL correspondant
est fort intéressant [du moins pour le rédacteur — les auditeurs du Collège,
qui l'ont subi pendant trois mois, sont peut-être d'un avis différent].

§5. Groupes compacts et groupes complexes

Dans ce paragraphe, le corps de base est R ou C.

5.1. Algébricité des groupes compacts

Proposition 1. Soit K un groupe compact, opérant linéairement et
continûment sur un espace vectoriel réel V de dimension finie. Toute orbite
de K dans V est fermée pour la topologie de Zariski de V (relativement
à R).

Soit x e V, Qt soit y un point de V n'appartenant pas à l'orbite Kx de x.
Il nous faut construire une fonction polynomiale P sur V qui soit nulle
sur Kx et non nulle en y. L'existence d'une telle fonction résulte du lemme plus
précis suivant:
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Lemme 1. Il existe une fonction polynomiale P sur V qui prend les
valeurs 0 en x et 1 en y et qui est invariante par K.

Puisque Kx et Ky sont fermés et disjoints, il existe une fonction continue
réelle / sur F qui vaut 0 sur Kx et 1 sur Ky. Comme les fonctions polynomiales
sont denses dans les fonctions continues (pour la topologie de la convergence
compacte), il existe une fonction polynomiale F sur V qui est ^ 1/3 sur Kx
et ^2/3 sur Ky. Soit dk la mesure de Haar de K, normalisée de telle sorte

que sa masse totale soit 1. La fonction F' définie par

F'(u) |

est une fonction polynomiale invariante par K; si a (resp. b) désigne la valeur
de F' sur l'orbite Kx (resp. Ky), on a a ^ 1/3 et b ^ 2/3, d'où a ^ b. La

F' - a
fonction P répond alors à la question.

b - a

Corollaire. L'image de K dans Aut(F) est fermée pour la

topologie de Zariski de End (F) [et a fortiori pour celle de Aut V)].

En effet, K opère linéairement sur End (F) par

{k, u) k. u si k eK,u e End(V)

et K est l'orbite de lv e End (F); on peut donc appliquer la proposition à

l'espace vectoriel End (F).

Proposition 2. Soit G un groupe algébrique linéaire sur R, et soit
K un sous-groupe compact de G(R). Soit H le plus petit sous-groupe
algébrique réel de G contenant K. On a alors

K H(R)

En effet, on peut plonger G comme sous-groupe algébrique fermé dans un

groupe linéaire GL„; la proposition résulte alors du corollaire ci-dessus.

Remarque. Le groupe H peut aussi être défini comme Y adhérence de K
dans G (pour la topologie de Zariski); il est en effet immédiat que cette
adhérence est un sous-schéma en groupes de G. La bigèbre de H est le quotient
de celle de G par l'idéal formé des fonctions dont la restriction à K est nulle.
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