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b) Supposons que K soit un corps topologique (resp. un corps valué

complet non discret) et que F soit muni d'une structure de groupe topologique

(resp. de groupe de Lie sur K). On peut prendre pour L la catégorie des

représentations continues (resp. K-analytiques) de rang fini. Une fonction

f e C appartient à la bigèbre Cl correspondante si et seulement si elle est

continue (resp. analytique): cela se vérifie sans difficulté. Le schéma GL est

appelé simplement l'enveloppe du groupe topologique F (resp. du groupe de

Lie T). On peut le caractériser par la propriété universelle suivante: si H est

un groupe algébrique linéaire, tout homomorphisme continu (resp. analytique)
de T dans le groupe topologique (resp. de Lie) H(K) se prolonge de façon

unique en un morphisme de GL dans H. Cela résulte simplement de la

description de CL donnée ci-dessus.

On notera que, même lorsque F est un groupe de Lie connexe de dimension

finie, son enveloppe n'est pas en général un groupe algébrique (i.e. GL ne

possède en général pas de module fidèle, cf. exercice 1).

c) Soit k un corps complet pour une valuation discrète; on suppose k
d'inégale caractéristique et de corps résiduel algébriquement clos. Soit k une
clôture algébrique de k et soit F Gal(k/k). Prenons pour K le corps Qp

(p étant la caractéristique résiduelle de k), et pour L la catégorie des

(^-représentations de F qui ont une «décomposition de Hodge» au sens de

Tate (Driebergen). La catégorie L est saturée. Le groupe GL correspondant
est fort intéressant [du moins pour le rédacteur — les auditeurs du Collège,
qui l'ont subi pendant trois mois, sont peut-être d'un avis différent].

§5. Groupes compacts et groupes complexes

Dans ce paragraphe, le corps de base est R ou C.

5.1. Algébricité des groupes compacts

Proposition 1. Soit K un groupe compact, opérant linéairement et
continûment sur un espace vectoriel réel V de dimension finie. Toute orbite
de K dans V est fermée pour la topologie de Zariski de V (relativement
à R).

Soit x e V, Qt soit y un point de V n'appartenant pas à l'orbite Kx de x.
Il nous faut construire une fonction polynomiale P sur V qui soit nulle
sur Kx et non nulle en y. L'existence d'une telle fonction résulte du lemme plus
précis suivant:
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Lemme 1. Il existe une fonction polynomiale P sur V qui prend les
valeurs 0 en x et 1 en y et qui est invariante par K.

Puisque Kx et Ky sont fermés et disjoints, il existe une fonction continue
réelle / sur F qui vaut 0 sur Kx et 1 sur Ky. Comme les fonctions polynomiales
sont denses dans les fonctions continues (pour la topologie de la convergence
compacte), il existe une fonction polynomiale F sur V qui est ^ 1/3 sur Kx
et ^2/3 sur Ky. Soit dk la mesure de Haar de K, normalisée de telle sorte

que sa masse totale soit 1. La fonction F' définie par

F'(u) |

est une fonction polynomiale invariante par K; si a (resp. b) désigne la valeur
de F' sur l'orbite Kx (resp. Ky), on a a ^ 1/3 et b ^ 2/3, d'où a ^ b. La

F' - a
fonction P répond alors à la question.

b - a

Corollaire. L'image de K dans Aut(F) est fermée pour la

topologie de Zariski de End (F) [et a fortiori pour celle de Aut V)].

En effet, K opère linéairement sur End (F) par

{k, u) k. u si k eK,u e End(V)

et K est l'orbite de lv e End (F); on peut donc appliquer la proposition à

l'espace vectoriel End (F).

Proposition 2. Soit G un groupe algébrique linéaire sur R, et soit
K un sous-groupe compact de G(R). Soit H le plus petit sous-groupe
algébrique réel de G contenant K. On a alors

K H(R)

En effet, on peut plonger G comme sous-groupe algébrique fermé dans un

groupe linéaire GL„; la proposition résulte alors du corollaire ci-dessus.

Remarque. Le groupe H peut aussi être défini comme Y adhérence de K
dans G (pour la topologie de Zariski); il est en effet immédiat que cette
adhérence est un sous-schéma en groupes de G. La bigèbre de H est le quotient
de celle de G par l'idéal formé des fonctions dont la restriction à K est nulle.
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5.2. L'enveloppe d'un groupe compact

Soit K un groupe compact. Considérons la catégorie L des représentations
linéaires continues réelles de rang fini de K. Cette catégorie est saturée

(cf. n° 4.3). Nous noterons G le schéma en groupes correspondant (sur R)
et C sa bigèbre. On dit que G est l'enveloppe de K, cf. n° 4.3, exemple b).
Rappelons (loc. cit.) qu'une fonction réelle / sur K appartient à C si et
seulement si elle vérifie les deux conditions suivantes:

a) Les translatées de / (à gauche, par exemple) engendrent un espace
vectoriel réel de rang fini.

b) / est continue.

Rappelons également que l'on a défini un homomorphisme canonique

K G(R)

Théorème 1. L'homomorphisme K^G(R) est un isomorphisme.

L'injectivité résulte du théorème de Peter-Weyl, que l'on admet.
Pour prouver la surjectivité, écrivons G comme limite projective des

groupes algébriques GE attachés aux éléments de L (cf. n° 4.3). On a
évidemment

G(R) lim. Ge(R)

D'autre part, d'après la prop. 2, tous les homomorphismes

K~*Ge(R)

sont surjectifs. Il en est donc de même (grâce à la compacité) de
K ->• lim. Ge(R), d'où le théorème.

Proposition 3. Soit E e L. Pour que E soit une représentation
fidèle de K (au sens usuel, i.e. le noyau de K -> Aut(E) doit être réduit à
{1}), il faut et il suffit que E soit fidèle comme C-comodule (cf. n° 3.5).

Si E est fidèle comme comodule, G s'identifie à GE, donc K s'identifie à
Ge(R) et il est clair que E est fidèle comme représentation de K.

La réciproque provient de ce qui a été démontré au n° 3.5, combiné avec
le lemme suivant:

Lemme 2 (Burnside). SiE est fidèle, toute représentation irréductible
continue de K est un facteur d'une représentation (g) E, avec ^ 0
convenable.
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Soit F une telle représentation, et soit % le caractère d'une composante
irréductible de C (x) F. Si F n'était facteur d'aucune puissance tensorielle de

E, les formules d'orthogonalité des coefficients de représentations
montreraient que % est orthogonal à tous les polynômes en les coefficients cu de

la représentation E. Comme ces polynômes sont denses dans l'espace des

fonctions continues sur K, on aurait % 0, ce qui est absurde.

[Il n'est probablement pas nécessaire d'utiliser les relations
d'orthogonalité. Peu importe.]

Remarque. L'analogue du lemme 2 dans le cas complexe est vrai, à
n n v

condition de remplacer ® E par (g) {E © E). La démonstration est

essentiellement la même. [Dans le cas réel, l'existence d'une forme quadratique non
V

dégénérée invariante montre que E est isomorphe à E; c'est pour cela que
V

l'on a pu se débarrasser de E.]

Corollaire. Lorsque E est fidèle, l'enveloppe de K s'identifie au

groupe Ge

Cela ne fait que reformuler la proposition.

Proposition 4. Pour que G soit algébrique, il faut et il suffit que K
soit un groupe de Lie.

Si K est un groupe de Lie, le théorème de Peter-Weyl montre qu'il admet

une représentation fidèle E; on a alors G GE d'après le corollaire ci-dessus,

et G est donc algébrique. Inversement, si G est algébrique, il est clair que

K G(R) est un groupe de Lie.

Définition 1. Un groupe algébrique linéaire réel H est dit anisotrope

s'il vérifie les deux conditions suivantes:

a) H(R) est compact.

b) H(R) est dense pour la topologie de Zariski de H.

(Comme H(R) contient un voisinage de 1 dans H, la condition b) équivaut à

la suivante:

b') Toute composante connexe (au sens algébrique) de H contient un

point réel.

En particulier, b) est vérifiée si H est connexe.)

Exemples

1) Un groupe semi-simple connexe est anisotrope si et seulement si la

forme de Killing de son algèbre de Lie est négative.
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2) Un groupe de type multiplicatif (non nécessairement connexe) est

anisotrope si et seulement si tout homomorphisme de ce groupe dans le groupe

multiplicatif Gm est trivial ou d'ordre 2. (La conjugaison complexe opère

donc par x ^ X"1 sur le groupe dual.)

Proposition 5. Soit H un groupe algébrique linéaire réel, et soit K
un sous-groupe compact de H(R) dense pour la topologie de Zariski. Alors

H est anisotrope, on a K H{R) et H s'identifie à l'enveloppe de K.

Le fait que H soit l'enveloppe de K résulte du corollaire à la prop. 3.

On en déduit que K H(R), donc que H est anisotrope.

Corollaire. Soit H' un groupe algébrique linéaire réel, et soit cp un

homomorphisme continu de K dans H'{R). Il existe alors un morphisme

f:H-+ H' et un seul qui prolonge cp.

Cela ne fait que traduire le fait que H est l'enveloppe de K.

Remarque. Il est essentiel de supposer que H' est linéaire (prendre

pour K un cercle, et pour H' une courbe elliptique!).

Proposition 6. Le Joncteur «enveloppe» est une équivalence de la

catégorie des groupes de Lie compacts sur celle des groupes algébriques

linéaires réels anisotropes.

C'est clair.

Remarques

1) Le foncteur «enveloppe» jouit des propriétés explicitées au n° 4.3.

En particulier, les éléments de G(R) K peuvent être interprétés comme les

automorphismes du foncteur «espace vectoriel sous-jacent» commutant au

produit tensoriel et triviaux pour le module trivial R. [Ce n'est pas tout à fait
le théorème de dualité de Tannaka, car ce dernier est relatif à des représentations

complexes unitaires, et à des automorphismes unitaires. Il devrait y
avoir moyen de passer de l'un à l'autre. Au concours!]

2) Si K est un groupe de Lie compact, il n'y a pas lieu de distinguer entre

son enveloppe en tant que groupe topologique, ou en tant que groupe de Lie
réel, puisque toute représentation linéaire continue d'un groupe de Lie réel est

analytique. En particulier, les éléments de la bigèbre de K sont des fonctions
analytiques sur K.
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5.3. L'enveloppe complexe d'un groupe compact

Soit K un groupe compact. Soit Lc la catégorie des représentations
linéaires complexes continues de rang fini de K. Cette catégorie est saturée (le

corps de base étant maintenant C). Nous noterons G/c et C/c le schéma en

groupes et la bigèbre correspondants, et nous dirons que G/c est l'enveloppe
complexe de K. D'après le n° 4.3, une fonction complexe / sur K appartient
à C/c si et seulement si elle vérifie les conditions suivantes:

a') Les translatées de / engendrent un espace vectoriel de rang fini.

b') / est continue.

En comparant avec les conditions a) et b) du n° 5.2, on voit que cela signifie

que la partie réelle et la partie imaginaire de / appartiennent à la bigèbre C
de G. On a donc

C/c C (x)R C

et le groupe G/c est le schéma en groupes déduit de G par extension des

scalaires de R à C. En particulier, le groupe G/c(C) de ses points
complexes peut être identifié à G(C).

Noter que la conjugaison complexe définit une involution g ^ g de G(C),
dont l'ensemble des invariants est G(R) K. Plus précisément:

Théorème 2. Supposons que K soit un groupe de Lie compact, et

soit i son algèbre de Lie. Alors g ^ g est une involution de Cartan forte
(cf. réd. n° 517) du groupe de Lie G(C). Les facteurs de la décomposition
de Cartan correspondante sont K et P exp (/{), de sorte que
G(C) K.P.

Démonstration

a) On va d'abord vérifier le th. 2 dans le cas particulier du groupe
orthogonal Gx 0„. On a Gi(R) Ow(R), Gi(C) 0„(C), et l'on sait que

g^> g est une décomposition de Cartan forte de 0„(C) dont l'ensemble des

invariants est Kx 0„(R). Cette décomposition montre en même temps que

Ki est dense dans 0„(C) pour la topologie de Zariski, donc que On est l'enveloppe

de Ki.
b) Passons au cas général. On choisit un plongement de K dans un groupe

orthogonal Kx On(R); l'enveloppe G de K s'identifie alors à un sous-

groupe algébrique de 0„, à savoir Vadhérence de K (pour la topologie de

Zariski). Le groupe G(C) est donc un sous-groupe de Gi(C), stable par
l'involution de Cartan considérée. Comme c'est un sous-groupe «de type
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algébrique», il en résulte (cf. réd. 517, p. 48, prop. 3) que la restriction de

g g à ce sous-groupe est bien une décomposition de Cartan forte. On

sait déjà que le sous-groupe de ses invariants est K. D'autre part, l'algèbre de

Lie de G(C) est C (x) f, et l'automorphisme de C (x) f induit par g ^ g est la

conjugaison complexe; on en déduit que le facteur P correspondant est bien

exp(/f), c.q.f.d.

Remarques

1) Lorsque K est un groupe compact quelconque, on peut l'écrire comme

limite projective de groupes de Lie compacts Kai et l'on a G(C) lim Ga(C),

avec des notations évidentes. D'après le th. 2, chaque Ga(C) a une décomposition

de Cartan Ka.Pa, avec Pa exp(/fa). Finalement, on obtient une

décomposition de G(C) sous la forme G(C) K. exp(zf), en notant î la limite

projective des fa.
[Cette décomposition ne semble présenter aucun intérêt en dehors du cas

où K est un groupe de Lie. Noter que G(C) n'est même pas localement

compact, si dim (AT) oo.]

2) A la place du groupe 0„(R), on aurait pu utiliser le groupe unitaire

U„(C), plus traditionnel. Toutefois, il aurait fallu expliquer comment on
considère U„ comme un groupe algébrique sur R, et pourquoi Uw/C s'identifie
à GL„/C.

Théorème 3. Les hypothèses étant celles du th. 2, soit X un groupe
de Lie complexe, et soit f un homomorphisme continu de K dans X.
Il existe alors un homomorphisme F: G(C) - X de groupes de Lie
complexes, et un seul, qui prolonge f.

Soit Kc le groupe de Lie complexifié de K, au sens de la rédaction 515,

§6, n° 10 [il faut modifier la rédaction en question, car elle suppose, bien

inutilement, que le groupe de Lie réel dont on part est connexe]. On a un
homomorphisme canonique n: Kc-+ G(C), et le th. 3 équivaut à dire que n
est un isomorphisme.

Il est clair en tout cas que n est surjectif; d'autre part, on sait (loc. cit.)
que l'algèbre de Lie de Kc est engendrée sur C par f; puisque celle de G(C)
est f (g) C, on en conclut que n est un revêtement. Ce revêtement admet une
section canonique G(C) K.P -* Kc définie par x. exp(zï) x' exp(zY')
où x désigne un élément de K, x' son image par K -» Kc, t désigne un élément
de il et t' son image par l'application tangente à K-+ Kc. L'image de cette
section est K' .P', avec des notations évidentes; c'est une réunion de

composantes connexes de Kc. De plus, c'est un sous-groupe en vertu du
lemme suivant:
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Lemme 3. Soit A un groupe topologique, soit B un sous-groupe
de A, et soit C la réunion des composantes connexes de A qui
rencontrent B. Alors C est un sous-groupe de A.

Si x, y e C, il existe des parties connexes X, Y de A qui rencontrent B et

sont telles que x e X, y e Y. Alors X.Y~l est une partie connexe de A
rencontrant B et contenant xy ~1

; on a donc xy ~1 e C, ce qui prouve bien

que C est un sous-groupe.

Le théorème 3 est maintenant évident. En effet, on vient de voir que K'. P'
est un sous-groupe ouvert de Kc\ comme il contient K\ il est nécessairement

égal à Kc et la projection n est bien un isomorphisme.

Exemple. Prenons pour K le cercle Si, de sorte que G(C) C*. Soit H
un groupe de Lie complexe compact connexe de dimension 1 [d'aucuns
appellent ça une courbe elliptique] ; en tant que groupe de Lie réel, H est un
tore de dimension 2. Choisissons un plongement / de S2 dans H. D'après le

th. 3, / se prolonge en un homomorphisme F: C* H. Il est immédiat

que F est un revêtement, et que son noyau est formé des puissances d'un
élément q e C*, avec | q | < 1; on peut donc identifier H à C*/gz [Täte
devrait être content].

Si K est un groupe de Lie compact, il est clair que son enveloppe G est

un groupe réductif (puisque toutes ses représentations linéaires sont semi-

simples), donc G/c est un groupe réductif complexe. Inversement:

Théorème 4. Soit H un groupe algébrique linéaire complexe réductif,
et soit K un sous-groupe compact maximal de H(C). L'enveloppe
complexe de K s'identifie à H.

Soit ïj l'algèbre de Lie de H, et soit celle de K. On va d'abord prouver
que t ® it, et qu'il existe une décomposition de Cartan de H{C) dont les

facteurs sont K et exp(/f).
Il suffit de le faire lorsque H est connexe, puis (quitte à passer à un

revêtement) lorsque H est, soit un tore, soit un groupe semi-simple. Le premier
cas est trivial. Le second a été traité dans la rédaction 517, § 3 (en se ramenant

au cas adjoint et en utilisant l'existence d'une forme réelle de ï) dont la forme
de Killing est négative).

Ceci étant, si G est l'enveloppe complexe de K, il est clair que le morphisme

canonique G H donne lieu à un homomorphisme G(C) -» H{C) qui est un
isomorphisme. C'est donc un isomorphisme.
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Remarque. Le th. 4 équivaut à dire que Y enveloppe de K est une «forme

réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H{C),

— formes réelles anisotropes de H.

En particulier, ces dernières sont conjuguées entre elles par les éléments

de H(C) (et même par ceux de H°{C), H° désignant la composante neutre

de H).

5.4. Retour aux groupes anisotropes

Proposition 7. Soit G un groupe algébrique linéaire réel anisotrope,

et soit H un sous-groupe algébrique de G. Soit V G/H l'espace

homogène correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L'application canonique G(R) -> L(R) est surjective (de sorte qu'on
peut identifier V(R) à G(R)/if(R)).

c) Si H est distingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g h» g du th. 2 laisse évidemment stable

le sous-groupe H{C) de G(C). Comme H(C) est «de type algébrique», on en

conclut que H(C) admet lui-même une décomposition de Cartan K.P, où

K H(C) n G(R) H(R). Mais alors il est clair que l'adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est

anisotrope, d'où a).

Soit maintenant v e L(R); soit g e G(C) un élément dont l'image dans

V(C) G(C)/H(C) est v. On a g g mod H{C). Soit K{ .Px la décomposition

de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g kiPi, avec kx e Ku px e P{. L'hypothèse g g mod H{C) signifie qu'il
existe k e K et p e P tels que g gkp, i.e. kxpx kxp^lkp, d'où p\ kp,
ce qui entraîne k 1, p p\. Comme P est stable par extraction de racines
carrées, on a a e P. On en conclut que g kx mod H(C), donc que v est

l'image de l'élément k{ e G(R), ce qui prouve b).
Enfin, si H est distingué, il est clair que l'image de Kx dans (G/H) (R) est

dense pour la topologie de Zariski de G/H; or cette image est un compact,
d'où etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sûr, dans le cas où H est

connexe, qui est trivial.]
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5.5. Groupes de Lie complexes réductifs
Théorème 5. Soient H un groupe de Lie complexe, H° sa composante

neutre et jf) son algèbre de Lie. Les conditions suivantes sont
équivalentes:

(i) H/H° est fini; b est réductive; la composante neutre du centre
de H° est isomorphe à un produit de groupes C*.

(ii) H/H° est fini; toute représentation linéaire complexe de H est

semi-simple; il existe une telle représentation qui est fidèle.

(iii) H/H° est fini; si K est un sous-groupe compact maximal de H,
et f son algèbre de Lie, on a b f © if.

(iv) Il existe un groupe de Lie compact K tel que H soit isomorphe
au complexifié de K.

(v) Il existe un groupe algébrique linéaire sur C qui est réductif, et dont
le groupe des points est isomorphe à H (comme groupe de Lie complexe).

Démonstration. L'équivalence (iv) & (v) résulte des ths. 3 et 4. • Le

fait que (iv) =» (iii) résulte de la décomposition de Cartan de H. Inversement,

supposons (iii) vérifiée, soit G l'enveloppe de K, et soit G(C) le complexifié
de K. L'injection K ^ H se prolonge en un morphisme / : G(C) H de

groupes de Lie complexes. Vu que b f © zf, f est un isomorphisme local.
De plus, K est un sous-groupe compact maximal à la fois de G(C) et de H
et la restriction de f ä K est l'identité (modulo les identifications faites). Cela

entraîne que / est un isomorphisme, en vertu du lemme suivant:

Lemme 4. Soit f : A -> B un homomorphisme de groupes de Lie réels.

On suppose:

a) que f est un isomorphisme local;

b) que A et B ont un nombre fini de composantes connexes;

c) qu'il existe un sous-groupe compact maximal KA (resp. KB) de A
(resp. de B) tel que la restriction de f à KA soit un isomorphisme de

Ka sur Kb

Alors f est un isomorphisme.

Démonstration du lemme 4. On sait que B possède une décomposition

multiexponentielle B KB. exp(pi) ••• exp(pn), où les pt sont des sous-

espaces vectoriels de l'algèbre de Lie b de B. Cela permet de définir une section

h: B A par

£. exp^j)... exp(6j ^ k'. exp(^)... exp(^)
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où k' désigne l'image réciproque de k dans KA et t[,..., t'n les éléments de

l'algèbre de Lie de A relevant tu ...,4. L'image de h est une réunion de

composantes connexes de A; comme elle contient KJ4, c'est A tout entier;

d'où le lemme.

On a donc prouvé l'équivalence (iii) & (iv).

L'implication (v) => (i) est immédiate: on sait en effet que tout groupe

réductif connexe est extension d'un groupe semi-simple par un groupe de type

multiplicatif. Inversement, montrons que (i) => (iii) (ce qui prouvera que (i)

est équivalent à (iii), (iv), (v)). On peut supposer H connexe. Si Z désigne la

composante neutre du centre de H, et S son groupe dérivé, S n Z est un groupe

discret, qui est le centre de S. Or on a:

Lemme 5. Le centre d'un groupe de Lie complexe, connexe, d'algèbre de

Lie semi-simple, est fini.
Il suffit de voir que le groupe fondamental du groupe adjoint est fini. Or

le groupe adjoint admet une décomposition de Cartan K.P, avec K compact
semi-simple connexe (cf. rédaction numéro 517); son groupe fondamental est

le même que celui de K, et ce dernier est fini d'après un théorème bien connu
d'Int. (chap. VII, §3, prop. 5).

Ceci étant, on voit que 5 n Z est fini, donc que H admet pour revêtement

fini le produit S x Z. Pour vérifier que H jouit de la propriété (iii), il suffit
de le faire pour son revêtement S x Z, c'est-à-dire pour S et pour Z. Le cas

de Z est trivial (puisqu'on l'a supposé isomorphe à (C*)n); pour S, on

remarque que, d'après le lemme 5, son centre est fini, et l'on est ramené au
cas du groupe adjoint; mais ce dernier est évidemment «algébrique»,
i.e. vérifie (v), donc aussi (iii).

Reste à démontrer que (ii) est équivalente aux quatre autres propriétés. Tout
d'abord, on a (iv) => (ii); en effet, si H est le complexifié de K, et si E est une
représentation linéaire complexe de H, les sous-espaces de E stables par K le

sont aussi par H, ce qui montre que E est semi-simple; de même, le fait que
K ait une représentation linéaire fidèle montre que H en possède une.

Enfin, supposons (ii) vérifiée. L'existence d'une représentation semi-simple
et fidèle de H montre que f) est réductive (car la représentation de f) correspondante

est aussi semi-simple et fidèle). D'autre part, H° vérifie aussi (ii) (le
seul point non évident est que toute représentation linéaire p de H° soit semi-
simple; cela se voit en remarquant que la représentation linéaire induite (au
sens Frobenius!) de p est semi-simple). Si Z désigne la composante neutre
du centre de H et S le groupe dérivé de H, on voit comme ci-dessus que S n Z
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est un groupe fini F. On a un homomorphisme surjectif H-* Z/F\ le groupe
Z/F est donc un groupe commutatif, connexe, dont toutes les représentations
linéaires sont semi-simples; de plus, Z possède une représentation linéaire
fidèle. Il en résulte facilement (cf. exercice 5) que Z est isomorphe à (C*)".
On a donc (ii) => (i), ce qui achève la démonstration.

[Cette démonstration n'est en fait qu'une simple vérification: tout le travail
sérieux a déjà été fait. On devrait pouvoir la présenter plus simplement.]

Définition 2. Un groupe de Lie complexe qui vérifie les propriétés
équivalentes du th. 5 est dit réductif

Théorème 6. Soit H un groupe de Lie complexe réductif. Soit G

son enveloppe complexe (en tant que groupe de Lie complexe, cf. n° 4.3).
Alors G est un groupe algébrique linéaire complexe réductif (au sens

algébrique) et Vapplication canonique HG(C) est un isomorphisme.

Soit K un sous-groupe compact maximal de H; puisque H est le complexifié
de K, les représentations linéaires complexes (holomorphes) de H
correspondent bijectivement (par restriction) à celles de K. Il s'ensuit que le

groupe G en question n'est autre que l'enveloppe complexe GK/C de K, d'où
le théorème.

Corollaire 1. Soient Gx et G2 deux groupes algébriques linéaires

complexes, et soit f: GX{C) -* G2(C) un homomorphisme de groupes de

Lie complexes. Si Gx est réductif f est «algébrique» (i.e. induit par un
morphisme Gx -* G2).

Cela ne fait que traduire le th. 6.

Corollaire 2. Le fondeur «enveloppe» est une équivalence de la

catégorie des groupes de Lie complexes réductifs sur celle des groupes
algébriques linéaires réductifs.

C'est clair.

Remarque. Soit K un sous-groupe compact maximal de G(C), où G est

algébrique linéaire réductif sur C. On peut résumer ce qui précède ainsi:

l'algèbre affine de G s'identifie à l'algèbre des fonctions holomorphes sur G(C)
dont les translatées engendrent un espace vectoriel de dimension finie; par
restriction à K, cette algèbre s'applique isomorphiquement sur l'algèbre des

fonctions continues complexes sur K dont les translatées engendrent un espace

vectoriel de dimension finie.
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[On obtient ainsi des bigèbres sur C; à ces bigèbres correspondent des

schémas en groupes; à ces schémas en groupes correspondent des groupes de

Lie complexes; à ces groupes... Voyez, voyez, la machine tourner!]

Exercices

§1

1) Soit E un Z-module projectif de type fini. On identifie End (2s) à

E 0 Ef; on note / l'élément de E 0 E' correspondant à \E, et son image

dans E' ® E.
On munit E 0 E' End (is) de la structure de cogèbre opposée à celle

définie au n° 1.1.

a) Si x a 0 a' e E 0 2s", montrer que d(x) a 0 lI 0 a'.

b) On définit une application dE: E -+ End (is) ®E E®E'®E par
a a (x) '/. Montrer que cette application définit sur E une structure de

comodule à gauche sur End(£").

c) On identifie End(jE) (x) End(iT) à End(2i (x) E) par l'application

(u,v)^> u ® v. D'autre part, si on écrit End(is (x) E) sous la forme
E (x) E 0 E' (x) E" la permutation des deux facteurs E' définit un auto-
morphisme a de End (is (x) is). Montrer que l'on a

c/(w) o(u 0 1^) si u e End(is)

d) Soit (Vj) une base de E, et soit {Etj v'j 0 i»/) la base correspondante
de End^). Montrer que

d(E,j) Y,Eik®EkJ.
k

e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogèbre plate, et soit E un comodule sur C.

a) Soit V un /f-module tel que E soit isomorphe (comme module) à un
quotient de E. Montrer qu'il existe un sous-comodule de C F tel que E
soit isomorphe (comme comodule) à un quotient de (Utiliser le morphisme
C0 V-+ C® Eetle fait que E est isomorphe à un sous-comodule de C ® E.)
Montrer que, si K est noethérien, et E de type fini, on peut choisir de type
fini.
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