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b) Supposons que K soit un corps topologique (resp. un corps valué
complet non discret) et que I soit muni d’une structure de groupe topologique
(resp. de groupe de Lie sur K). On peut prendre pour L la catégorie des
représentations continues (resp. K-analytiques) de rang fini. Une fonction
f € C appartient a la bigebre C, correspondante si et seulement si elle est
continue (resp. analytique): cela se vérifie sans difficulté. Le schéma G, est
appelé simplement /’enveloppe du groupe topologique I' (resp. du groupe de
Lie T'). On peut le caractériser par la propriété universelle suivante: si A est
un groupe algébrique linéaire, tout homomorphisme continu (resp. analytique)
de T dans le groupe topologique (resp. de Lie) H(K) se prolonge de facon
unique en un morphisme de G, dans H. Cela résulte simplement de la
description de C; donnée ci-dessus.

On notera que, méme lorsque I' est un groupe de Lie connexe de dimension
finie, son enveloppe n’est pas en général un groupe algébrique (i.e. G, ne
possede en général pas de module fidéle, cf. exercice 1).

¢) Soit k£ un corps complet pour une valuation discreéte; on suppose k
d’inégale caractéristique et de corps résiduel algébriquement clos. Soit k une
cloture algébrique de k et soit I’ = Gal(lz/k). Prenons pour K le corps Q,
(p étant la caractéristique résiduelle de k), et pour L la catégorie des
Q,-représentations de I' qui ont une «décomposition de Hodge» au sens de
Tate (Driebergen). La catégorie L est saturée. Le groupe G; correspondant
est fort intéressant [du moins pour le rédacteur — les auditeurs du Collége,
qui I’ont subi pendant trois mois, sont peut-étre d’un avis différent].

§5. GROUPES COMPACTS ET GROUPES COMPLEXES
Dans ce paragraphe, le corps de base est R ou C.

5.1. ALGEBRICITE DES GROUPES COMPACTS

PROPOSITION 1. Soit K un groupe compact, opérant linéairement et
continilmment sur un espace vectoriel réel V de dimension finie. Toute orbite
de K dans V est fermée pour la topologie de Zariski de V (relativement
a R).

Soit x € V, et soit y un point de ¥ n’appartenant pas a I’orbite Kx de x.
Il nous faut construire une fonction polynomiale P sur ¥ qui soit nulle

sur Kx et non nulle en y. L’existence d’une telle fonction résulte du lemme plus
précis suivant:
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LEMME 1. Il existe une fonction polynomiale P sur V qui prend les
valeurs 0 en x et 1 en y et qui est invariante par K.

Puisque Kx et Ky sont fermés et disjoints, il existe une fonction continue
réelle f sur V qui vaut O sur Kx et 1 sur Ky. Comme les fonctions polynomiales
sont denses dans les fonctions continues (pour la topologie de la convergence
compacte), il existe une fonction polynomiale F sur ¥V qui est < 1/3 sur Kx
et = 2/3 sur Ky. Soit dk la mesure de Haar de K, normalisée de telle sorte
que sa masse totale soit 1. La fonction F’ définie par

F'(v) = § F(k.v)dk

K

est une fonction polynomiale invariante par K; si a (resp. b) désigne la valeur
de F’ sur ’orbite Kx (resp. Ky), onaa < 1/3 et b >2/3, dou a # b. La

r

fonction P = répond alors a la question.

b—a

COROLLAIRE. L’image de K dans Aut(V) est fermée pour la
topologie de Zariski de End(V) et a fortiori pour celle de Aut(V)].

En effet, K opere linéairement sur End (V) par
k,wy—k.u si keK,ueEnd(V),

et K est ’orbite de 1, € End(V); on peut donc appliquer la proposition a
I’espace vectoriel End (V).

PROPOSITION 2. Soit G un groupe algébrique linéaire sur R, et soit
K un sous-groupe compact de G(R). Soit H le plus petit sous-groupe
algébrique réel de G contenant K. On a alors

K = HR) .

En effet, on peut plonger G comme sous-groupe algébrique fermé dans un
groupe linéaire GL,; la proposition résulte alors du corollaire ci-dessus.

Remarque. Le groupe H peut aussi ére défini comme P'adhérence de K
dans G (pour la topologie de Zariski); il est en effet immédiat que cette
adhérence est un sous-schéma en groupes de G. La bigébre de H est le quotient
de celle de G par I’idéal formé des fonctions dont la restriction a X est nulle.
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5.2. L’ENVELOPPE D’UN GROUPE COMPACT

Soit K un groupe compact. Considérons la catégorie L des représentations
linéaires continues réelles de rang fini de K. Cette catégorie est saturée
(cf. n° 4.3). Nous noterons G le schéma en groupes correspondant (sur R)
et C sa bigebre. On dit que G est ’enveloppe de K, cf. n® 4.3, exemple b).
Rappelons (loc. cit.) qu'une fonction réelle f sur K appartient a C si et
seulement si elle vérifie les deux conditions suivantes:

a) Les translatées de f (a gauche, par exemple) engendrent un espace
vectoriel réel de rang fini.

b) f est continue.

Rappelons également que I’on a défini un homomorphisme canonique

K- GR).

THEOREME 1. L’homomorphisme K — G(R) est un isomorphisme.

L’injectivité résulte du théoréme de Peter-Weyl, que ’on admet.

Pour prouver la surjectivité, écrivons G comme limite projective des
groupes algébriques Gg attachés aux éléments de L (cf. n° 4.3). On a
évidemment °

GR) = li(}_n.GE(R) ‘

D’autre part, d’aprés la prop. 2, tous les homomorphismes
K- Gez(R)

sont surjectifs. Il en est donc de méme (grice a la compacité) de
K- IEn.GE(R), d’ou le théoréme.

PROPOSITION 3. Soit E e L. Pour que E soit une représentation
fidéle de K (au sens usuel, i.e. le noyau de K — Aut(E) doit étre réduit a
{1}), il faut et il suffit que E soit fidele comme C-comodule (cf. n° 3.5).

Si E est fidéle comme comodule, G s’identifie a Gg, donc K s’identifie a
Gz(R) et il est clair que E est fidéle comme représentation de K.

La réciproque provient de ce qui a été démontré au n° 3.5 , combiné avec
le lemme suivant:

LEMME 2 (Burnside). Si E est fidele, toute representatzon irréductible

continue de K est un facteur d’une représentation ® E, avec n>0
convenable.
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Soit F une telle représentation, et soit y le caractére d’une composante
irréductible de C ® F. Si F n’était facteur d’aucune puissance tensorielle de
E, les formules d’orthogonalité des coefficients de représentations mon-
treraient que 7 est orthogonal a tous les polyndmes en les coefficients c;; de
la représentation E. Comme ces polyndmes sont denses dans I’espace des
fonctions continues sur K, on aurait y = 0, ce qui est absurde.

[I1 n’est probablement pas nécessaire d’utiliser les relations d’ortho-
gonalité. Peu importe.]

Remarque. L’ analogue du lemme 2 dans le cas complexe est vrai, a
condition de remplacer ® E par ® (E® E) La démonstration est essen-
tiellement la méme. [Dans le cas réel, I’existence d’une forme quadratique non
dégénérée invariante montre que E est isomorphe a E; c’est pour cela que
I’on a pu se débarrasser de l\é’.]

COROLLAIRE. Lorsque E est fidele, I’enveloppe de K s’identifie au
groupe Gg.

Cela ne fait que reformuler la proposition.

PROPOSITION 4. Pour que G soit algébrique, il faut et il suffit que K
soit un groupe de Lie.

Si K est un groupe de Lie, le théoréme de Peter-Weyl montre qu’il admet
une représentation fidéle E; on a alors G = Gg d’apres le corollaire ci-dessus,
et G est donc algébrique. Inversement, si G est algébrique, il est clair que
K = G(R) est un groupe de Lie.

DEFINITION 1. Unr groupe algébrique linéaire réel H est dit anisotrope
s’il vérifie les deux conditions suivantes:

a) H(R) est compact.

b) H(R) est dense pour la topologie de Zariski de H.

(Comme H(R) contient un voisinage de 1 dans H, la condition b) équivaut a
la suivante:

b’) Toute composante connexe (au sens algébrique) de H contient un
point réel.

En particulier, b) est vérifiée si H est connexe.)

Exemples

1) Un groupe semi-simple connexe est anisotrope si et seulement si la
forme de Killing de son algébre de Lie est négative.
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2) Un groupe de type multiplicatif (non nécessairement connexe) est
anisotrope si et seulement si tout homomorphisme de ce groupe dans le groupe
multiplicatif G,, est trivial ou d’ordre 2. (La conjugaison complexe opere
donc par y — y ~! sur le groupe dual.)

PROPOSITION 5. Soit H un groupe algébrique linéaire réel, et soit K
un sous-groupe compact de H(R) dense pour la topologie de Zariski. Alors
H est anisotrope, on a K = HR) et H s’identifie a I’enveloppe de K.

Le fait que H soit I’enveloppe de K résulte du corollaire & la prop. 3.
On en déduit que K = H(R), donc que H est anisotrope.

COROLLAIRE. Soit H’ un groupe algébrique linéaire réel, et soit ¢ un
homomorphisme continu de K dans H'(R). Il existe alors un morphisme
f:H— H' et un seul qui prolonge ¢.

Cela ne fait que traduire le fait que H est ’enveloppe de K.

Remarque. 11 est essentiel de supposer que H' est linéaire (prendre
pour K un cercle, et pour H’ une courbe elliptique!).

PROPOSITION 6. Le foncteur «enveloppe» est une équivalence de la
catégorie des groupes de Lie compacts sur celle des groupes algébriques
linéaires réels anisotropes.

C’est clair.

Remarques

1) Le foncteur «enveloppe» jouit des propriétés explicitées au n° 4.3.
En particulier, les éléments de G(R) = K peuvent €tre interprétés comme les
automorphismes du foncteur «espace vectoriel sous-jacent» commutant au
produit tensoriel et triviaux pour le module trivial R. [Ce n’est pas tout a fait
le théoreme de dualité de Tannaka, car ce dernier est relatif a des représen-
tations complexes unitaires, et a des automorphismes unitaires. 11 devrait y
avoir moyen de passer de ’un a Iautre. Au concours!]

2) Si K est un groupe de Lie compact, il n’y a pas lieu de distinguer entre
son enveloppe en tant que groupe topologique, ou en tant que groupe de Lie
réel, puisque toute représentation linéaire continue d’un groupe de Lie réel est

analytique. En particulier, les éléments de la bigébre de K sont des fonctions
analytiques sur K.
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5.3. L’ENVELOPPE COMPLEXE D’UN GROUPE COMPACT

Soit K un groupe compact. Soit L¢ la catégorie des représentations
linéaires complexes continues de rang fini de K. Cette catégorie est saturée (le
corps de base étant maintenant C). Nous noterons G,¢c et C,c le schéma en
groupes et la bigebre correspondants, et nous dirons que G, ¢ est [’enveloppe
complexe de K. D’apres le n°® 4.3, une fonction complexe f sur K appartient
a C,c si et seulement si elle vérifie les conditions suivantes:

a’) Les translatées de f engendrent un espace vectoriel de rang fini.
b’) f est continue.

En comparant avec les conditions a) et b) du n® 5.2, on voit que cela signifie
que la partie réelle et la partie imaginaire de f appartiennent a la bigebre C
de G. On a donc

C/ic=CQ®rC

et le groupe G,c est le schéma en groupes déduit de G par extension des
scalaires de R a C. En particulier, le groupe G,c(C) de ses points
complexes peut étre identifié a G(C).

Noter que la conjugaison complexe définit une involution g — g de G(C),
dont I’ensemble des invariants est G(R) = K. Plus précisément:

THEOREME 2. Supposons que K soit un groupe de Lie compact, et
soit t son algébre de Lie. Alors g g est une involution de Cartan forte
(cf. réd. n° 517) du groupe de Lie G(C). Les facteurs de la décomposition
de Cartan correspondante sont K et P = exp(if), de sorte que
G(C) =K.P.

Démonstration

a) On va d’abord vérifier le th. 2 dans le cas particulier du groupe
orthogonal G, = 0,. On a G;(R) = 0,(R), G,(C) = 0,(C), et ’on sait que
gt g est une décomposition de Cartan forte de O,(C) dont I’ensemble des
invariants est K; = 0,(R). Cette décomposition montre en méme temps que
K, est dense dans O, (C) pour la topologie de Zariski, donc que O, est ’enve-
loppe de K.

b) Passons au cas général. On choisit un plongement de K dans un groupe
orthogonal K; = 0,(R); I’enveloppe G de K s’identifie alors & un sous-
groupe algébrique de O,, a savoir ’adhérence de K (pour la topologie de
Zariski). Le groupe G(C) est donc un sous-groupe de G;(C), stable par
P’involution de Cartan considérée. Comme c’est un sous-groupe «de type
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algébrique, il en résulte (cf. réd. 517, p. 48, prop. 3) que la restriction de
g+ F A ce sous-groupe est bien une décomposition de Cartan forte. On
sait déja que le sous-groupe de ses invariants est K. D’autre part, ’algébre de
Lie de G(C) est C ® f, et automorphisme de C & { induit par gt g est la
conjugaison complexe; on en déduit que le facteur P correspondant est bien
exp (if), c.q.f.d.

Remarques

1) Lorsque K est un groupe compact quelconque, on peut I’écrire comme
limite projective de groupes de Lie compacts K, et 'on a G(C) = lgn G.(O),
avec des notations évidentes. D’aprés le th. 2, chaque G,(C) a une décompo-
sition de Cartan K,.P,, avec P, = exp(if,). Finalement, on obtient une
décomposition de G(C) sous la forme G(C) = K .exp(if), en notant f la limite
projective des f,.

[Cette décomposition ne semble présenter aucun intérét en dehors du cas
ou K est un groupe de Lie. Noter que G(C) n’est méme pas localement
compact, si dim(K) = oo.}

2) A la place du groupe O,(R), on aurait pu utiliser le groupe unitaire
U,(C), plus traditionnel. Toutefois, il aurait fallu expliquer comment on
considére U, comme un groupe algébrique sur R, et pourquoi U, ¢ s’identifie
a GL,/c- _

THEOREME 3. Les hypothéses étant celles du th. 2, soit X un groupe
de Lie complexe, et soit f un homomorphisme continu de K dans X.
Il existe alors un homomorphisme F:G(C)—> X de groupes de Lie
complexes, et un seul, qui prolonge f.

Soit K¢ le groupe de Lie complexifié de K, au sens de la rédaction 515,
§6, n° 10 [il faut modifier la rédaction en question, car elle suppose, bien
inutilement, que le groupe de Lie réel dont on part est connexe]. On a un
homomorphisme canonique n: K- = G(C), et le th. 3 équivaut a dire que =«
est un isomorphisme.

Il est clair en tout cas que = est surjectif; d’autre part, on sait (loc. cit.)
que ’algebre de Lie de K¢ est engendrée sur C par f; puisque celle de G(C)
est f @ C, on en conclut que © est un revétement. Ce revétement admet une
section canonique G(C) = K.P — K¢ définie par x.exp(it) — x'.exp(it’)
ou x désigne un élément de K, x’ son image par K — K, ¢ désigne un élément
de if et ¢" son image par ’application tangente & K - K.. L’image de cette
section est K'.P’, avec des notations évidentes; c’est une réunion de

composantes connexes de Kc. De plus, c’est un sous-groupe en vertu du
lemme suivant:
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LEMME 3. Soit A un groupe topologique, soit B un sous-groupe
de A, et soit C la réunion des composantes connexes de A qui
rencontrent B. Alors C est un sous-groupe de A.

Si x, y € C, il existe des parties connexes X, Y de A qui rencontrent B et
sont telles que x € X,y € Y. Alors X.Y ! est une partie connexe de A
rencontrant B et contenant xy~!; on a donc xy~! € C, ce qui prouve bien
que C est un sous-groupe.

Le théoreme 3 est maintenant évident. En effet, on vient de voir que K’ . P’
est un sous-groupe ouvert de K¢; comme il contient K’, il est nécessairement
égal a K¢ et la projection 7 est bien un isomorphisme.

Exemple. Prenons pour K le cercle S;, de sorte que G(C) = C*. Soit H
un groupe de Lie complexe compact connexe de dimension 1 [d’aucuns
appellent ¢ca une courbe elliptique]; en tant que groupe de Lie réel, H est un
tore de dimension 2. Choisissons un plongement f de S; dans H. D’apres le
th. 3, f se prolonge en un homomorphisme F:C* - H. Il est immédiat
que F est un revétement, et que son noyau est formé des puissances d’un
élément g € C*, avec |g|< 1; on peut donc identifier H & C*/gZ [Tate
devrait étre content].

Si K est un groupe de Lie compact, il est clair que son enveloppe G est
un groupe réductif (puisque toutes ses représentations linéaires sont semi-
simples), donc G,¢ est un groupe réductif complexe. Inversement:

THEOREME 4. Soit H un groupe algébrique linéaire complexe réductif,
et soit K un sous-groupe compact maximal de H(C). L’enveloppe
complexe de K s’identifie a H.

Soit § ’algébre de Lie de H, et soit f celle de K. On va d’abord prouver
que ) = f @ if, et qu’il existe une décomposition de Cartan de H(C) dont les
facteurs sont K et exp(if).

Il suffit de le faire lorsque H est connexe, puis (quitte a passer a un
revétement) lorsque H est, soit un tore, soit un groupe semi-simple. Le premier
cas est trivial. Le second a été traité dans la rédaction 517, §3 (en se ramenant
au cas adjoint et en utilisant I’existence d’une forme réelle de §) dont la forme
de Killing est négative).

Ceci étant, si G est I’enveloppe complexe de K, il est clair que le morphisme
canonique G — H donne lieu a un homomorphisme G(C) = H(C) qui est un
isomorphisme. C’est donc un isomorphisme.
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Remarque. Le th. 4 équivaut & dire que ’enveloppe de K est une « forme
réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H(C),
— formes réelles anisotropes de H.

En particulier, ces derniéres sont conjuguées entre elles par les éléments
de H(C) (et méme par ceux de H°(C), H° désignant la composante neutre
de H).

5.4. RETOUR AUX GROUPES ANISOTROPES

PROPOSITION 7. Soit G un groupe algébrique linéaire réel anisotrope,
et soit H un sous-groupe algébrique de G. Soit V = G/H [’espace
homogéne correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L’application canonique G(R) — V(R) est surjective (de sorte qu’on
peut identifier V(R) a G(R)/H(R)).

¢) Si H estdistingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g g du th. 2 laisse évidemment stable
le sous-groupe H(C) de G(C). Comme H(C) est «de type algébrique», on en
conclut que H(C) admet lui-méme une décomposition de Cartan K.P, ou
K = H(C) n G(R) = H(R). Mais alors il est clair que adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est
anisotrope, d’ou a).

Soit maintenant v € V(R); soit g € G(C) un élément dont I’image dans
V(C) = G(C)/H(C) est v. On a g = g mod H(C). Soit K;.P; la décompo-
sition de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g = kip:, avec k; € K, p; € P;. L’hypothése g = g mod H(C) signifie qu’il
existe k € K et p € P tels que g = gkp, i.e. kip; = klpl_lkp, d’ou pf = kp,
ce qui entraine Kk =1, p = pf . Comme P est stable par extraction de racines
carrées, on a p; € P. On en conclut que g = k; mod H(C), donc que v est
I’image de I’élément k; € G(R), ce qui prouve b).

Enfin, si H est distingué, il est clair que I’image de K, dans (G/H) (R) est
dense pour la topologie de Zariski de G/H; or cette image est un compact,
d’ou etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sfir, dans le cas ou H est
connexe, qui est trivial.]
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5.5. GROUPES DE LIE COMPLEXES REDUCTIFS

THEOREME 5. Soient H wun groupe de Lie complexe, H° sa compo-
sante neutre et Y) son algebre de Lie. Les conditions suivantes sont
équivalentes:

(1) H/H° est fini; V) est réductive; la composante neutre du centre
de H° est isomorphe a un produit de groupes C*.

(i) H/H° est fini; toute représentation linéaire complexe de H est
semi-simple; il existe une telle représentation qui est fidéle.

(iii) H/H° est fini; si K est un sous-groupe compact maximal de H,
et t son algébre de Lie, on a §h =1t @ if.

(iv) 1l existe un groupe de Lie compact K tel que H soit isomorphe
au complexifié de K.

(v) 1l existe un groupe algébrique linéaire sur C qui est réductif, et dont
le groupe des points est isomorphe @ H (comme groupe de Lie complexe).

Démonstration. L1’équivalence (iv) € (v) résulte des ths. 3 et 4. Le
fait que (iv) = (iii) résulte de la décomposition de Cartan de H. Inversement,
supposons (ii1) vérifiée, soit G ’enveloppe de K, et soit G(C) le complexifié
de K. L’injection K — H se prolonge en un morphisme f:G(C)— H de
groupes de Lie complexes. Vu que §) = f @ if, f est un isomorphisme local.
De plus, K est un sous-groupe compact maximal a la fois de G(C) et de H
et la restriction de f a K est ’identité (modulo les identifications faites). Cela
entralne que f est un isomorphisme, en vertu du lemme suivant:

LEMME 4. Soit f:A — B un homomorphisme de groupes de Lie réels.
On suppose:.

a) que [ est un isomorphisme local;

b) que A et B ont un nombre fini de composantes connexes;

c) qu’il existe un sous-groupe compact maximal K, (resp. Kz) de A
(resp. de B) tel que la restriction de f a K, soit un isomorphisme de
K, sur Kjp.

Alors f est un isomorphisme.
Démonstration du lemme 4. On sait que B possede une décomposition
multiexponentielle B = Kg.exp(p;)...exp(p,), ou les p; sont des sous-

espaces vectoriels de I’algebre de Lie b de B. Cela permet de définir une section
h:B— A par

k.exp(t;)...exp(f,)— k' .exp(¢])...exp(¢,)
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ot k' désigne 'image réciproque de k dans K, et ¢, ..., ¢, les éléments de
’algébre de Lie de A relevant ¢, ..., ,. L’image de h est une réunion de
composantes connexes de A; comme elle contient Ky, c’est A tout entier;
d’ou le lemme.

On a donc prouvé ’équivalence (iii) ¢ (iv).

L’implication (v) = (i) est immédiate: on sait en effet que tout groupe
réductif connexe est extension d’un groupe semi-simple par un groupe de type
multiplicatif. Inversement, montrons que (i) = (iil) (ce qui prouvera que 1)
est équivalent a (iii), (iv), (v)). On peut supposer H connexe. Si Z désigne la
composante neutre du centre de H, et S son groupe dérive, S N Z est un groupe
discret, qui est le centre de S. Or on a:

LEMME 5. Le centre d’un groupe de Lie complexe, connexe, d’algébre de
Lie semi-simple, est fini.

Il suffit de voir que le groupe fondamental du groupe adjoint est fini. Or
le groupe adjoint admet une décomposition de Cartan K. P, avec K compact
semi-simple connexe (cf. rédaction numéro 517); son groupe fondamental est
le méme que celui de K, et ce dernier est fini d’apres un théoréme bien connu
d’Int. (chap. VII, §3, prop. 5).

Ceci étant, on voit que S N Z est fini, donc que H admet pour revétement
fini le produit S X Z. Pour vérifier que H jouit de la propriété (iii), il suffit
de le faire pour son revétement S X Z, c’est-a-dire pour S et pour Z. Le cas
de Z est trivial (puisqu’on I’a supposé isomorphe a (C*)”); pour S, on
remarque que, d’apres le lemme 5, son centre est fini, et ’on est ramené au
cas du groupe adjoint; mais ce dernier est évidemment «algébrique»,
i.e. vérifie (v), donc aussi (iii).

Reste a démontrer que (ii) est équivalente aux quatre autres propriétés. Tout
d’abord, on a (iv) = (ii); en effet, si H est le complexifié de K, et si E est une
représentation linéaire complexe de H, les sous-espaces de E stables par K le
sont aussi par H, ce qui montre que E est semi-simple; de méme, le fait que
K ait une représentation linéaire fidéle montre que H en posséde une.

Enfin, supposons (ii) vérifiée. L’existence d’une représentation semi-simple
et fidele de H montre que § est réductive (car la représentation de § correspon-
dante est aussi semi-simple et fidele). D’autre part, H° vérifie aussi (ii) (le
seul point non évident est que toute représentation linéaire p de H° soit semi-
simple; cela se voit en remarquant que la représentation linéaire induite (au
sens Frobenius!) de p est semi-simple). Si Z désigne la composante neutre
du centre de H et S le groupe dérivé de H, on voit comme ci-dessus que SN Z
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est un groupe fini F. On a un homomorphisme surjectif H — Z/F; le groupe
Z/F est donc un groupe commutatif, connexe, dont toutes les représentations
linéaires sont semi-simples; de plus, Z posséde une représentation linéaire
fidele. Il en résulte facilement (cf. exercice 5) que Z est isomorphe a (C*)”.
On a donc (ii)) = (i), ce qui achéve la démonstration.

[Cette démonstration n’est en fait qu’une simple vérification: tout le travail
sérieux a déja été fait. On devrait pouvoir la présenter plus simplement.]

DEFINITION 2. Un groupe de Lie complexe qui vérifie les propriétés équi-
valentes du th. 5 est dit réductif.

THEOREME 6. Soit H un groupe de Lie complexe réductif. Soit G
son enveloppe complexe (en tant que groupe de Lie complexe, cf. n° 4.3).
Alors G est un groupe algébrique linéaire complexe réductif (au sens
algébrique) et l’application canonique H — G(C) est un isomorphisme.

Soit K un sous-groupe compact maximal de H; puisque H est le complexifié
de K, les représentations linéaires complexes (holomorphes) de H corres-
pondent bijectivement (par restriction) a celles de K. Il s’ensuit que le
groupe G en question n’est autre que /’enveloppe complexe Gk,c de K, d’ou
le théoreme.

COROLLAIRE 1. Soient G, et G, deux groupes algébriques linéaires
complexes, et soit f:G(C)— G,(C) un homomorphisme de groupes de
Lie complexes. Si G, est réductif, [ est «algébrique» (i.e. induit par un
morphisme G; = G,).

Cela ne fait que traduire le th. 6.

COROLLAIRE 2. Le foncteur «enveloppe» est une équivalence de la
catégorie des groupes de Lie complexes réductifs sur celle des groupes
algébriques linéaires réductifs.

C’est clair.

Remarque. Soit K un sous-groupe compact maximal de G(C), ou G est
algébrique linéaire réductif sur C. On peut résumer ce qui précede ainsi:
I’algébre affine de G s’identifie a I’algebre des fonctions holomorphes sur G (C)
dont les translatées engendrent un espace vectoriel de dimension finie; par
restriction a K, cette algébre s’applique isomorphiquement sur 1’algébre des
fonctions continues complexes sur K dont les translatées engendrent un espace
vectoriel de dimension finie.
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[On obtient ainsi des bigébres sur C; a ces bigebres correspondent des
schémas en groupes; a ces schémas en groupes correspondent des groupes de
Lie complexes; & ces groupes... Voyez, voyez, la machine tourner!]

EXERCICES

§1

1) Soit E un K-module projectif de type fini. On identifie End(E) a
E ® E’; on note I I’élément de E ® E’ correspondant & 1g, et 7 son image
dans £’ ® E.

On munit £ ® E’ = End(E) de la structure de cogébre opposée a celle
définie au n° 1.1.

a) Six=a®a € EQE’', montrer que d(x) =a® IR a’.

b) On définit une application dg: E—=> End(E) Q E = EX E'® E par
a— a @ ‘I. Montrer que cette application définit sur £ une structure de
comodule a gauche sur End(E).

¢) On identifie End(F) ® End(E) a End(E® E) par [Papplica-
tion (u,v)~ u ® v. D’autre part, si on écrit End(£ Q E) sous la forme
EQREXE QE’" la permutation des deux facteurs E’ définit un auto-
morphisme ¢ de End(E & E). Montrer que ’on a

du) =cw®1g) si ueEndE).

d) Soit (v;) une base de E, et soit (E;; = v ; ® ;) la base correspondante
de End(E). Montrer que

dEj) = LE«QEy; .
k
e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogébre plate, et soit £ un comodule sur C.

a) Soit ¥V un K-module tel que E soit isomorphe (comme module) & un
quotient de E. Montrer qu’il existe un sous-comodule F de C ® V tel que E
soit isomorphe (comme comodule) & un quotient de F. (Utiliser le morphisme
C® V— CQ Eetlefait que E est isomorphe a un sous-comodule de C X E.)

Montrer que, si K est noethérien, et E de type fini, on peut choisir F de type
fini.
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