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des A-modules de rang fini sur celle des A-modules topologiques discrets de

rang fini.
Soit Fie dual de A; on le munit de sa structure naturelle de ^4-bimodule.

Si a e S, soit Fa l'orthogonal de a dans F. Soit C la réunion des Fa, pour
a e S. Le dual de C (resp. le dual topologique de A) s'identifie de façon
évidente à À (resp. à C). D'après le n° 2.2, il y a donc sur C une structure
de cogèbre, caractérisée par la formule:

(1) < d(c), a ® b> <c, ab > si c e C, a, b e A

De plus, tout ^4-module à droite de rang fini est muni canoniquement d'une

structure de comodule à gauche sur C, et réciproquement; on a

(2) < dE(x), a ® x' > <xa,x' > si x e F, x' e F', a e A

d'après la formule (1) du n° 2.2.

Les éléments de la cogèbre C peuvent être caractérisés de la manière
suivante :

Lemme 1. Soit f un élément du dual F de A. Les conditions
suivantes sont équivalentes:

(a) f e C.

(b) (resp. (b')) Le sous-A-module à gauche (resp. à droite) de F
engendré par f est de rang fini.

(c) Il existe un A-module à droite E de rang fini, et des éléments

Xi e F, x' e E' en nombre fini, tels que

< f, a> £ < Xiü, x'i > pour tout a e A

La condition (b) signifie que l'annulateur de / dans le y4-module à

gauche F appartient à 5^; comme S est cofinal dans Sg, cela revient à dire
que / appartient à C. On démontre de même que (a) & (b').

D'autre part, pour un module E donné, la condition (c) signifie que /
appartient à la sous-cogèbre CE de C attachée à E (cf. n° 2.1). Comme C est
réunion des CE, cela prouve que (a) ^ (c).

[On laisse au lecteur le plaisir de démontrer directement l'équivalence
(b) * (c).]
4.2. La bigèbre d'un groupe

On applique ce qui précède à l'algèbre A K[T] d'un groupe 37. Le dual
F F{T) de A est l'espace des fonctions sur F; la dualité entre A et F
s'exprime par la formule:

</, I ^iJi> E si / e F, Xt e K,yt e T
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La cogèbre correspondante est notée C C(T). Elle jouit des propriétés
suivantes :

(i) La co-unité de C est l'application e: f ^ /(1).

(ii) Pour qu'une fonction / appartienne à C, il faut et il suffit que ses
translatées (à gauche ou à droite) engendrent un K-espace vectoriel de
dimension finie. (C'est l'équivalence (a) ^ (b) du Lemme L)

(iii) Identifions à la façon habituelle les éléments de F 0 F aux fonctions
décomposables sur T x LSi/e C, ona d(f) e C ® C et C (g) C est un sous-
espace de F (S) F; ainsi d(f) peut être interprétée comme une fonction sur
T x T. On a:

(3) rf(/)(Yi, y2) /(Y1Y2) si Yi, Y2 e r
(Cela ne fait que traduire la formule (1) du n° précédent.)

(iv) C contient 1, et est stable par le produit: cela résulte de (ii).

(v) Les structures de cogèbre et d'algèbre de C sont compatibles entre

elles, i.e. elles font de C une bigèbre. Cette bigèbre vérifie les axiomes du

n° 3.1. (L'axiome (i) dit que f^ d{f) doit être un morphisme d'algèbres;
c'est le cas. Les autres axiomes sont encore plus évidents.)

(vi) La bigèbre C possède une inversion i donnée par

(4) /(/)(Y) /(Y-1) •

(Il faut vérifier les conditions (a) et (b) du n° 3.1. La condition (a) est

évidemment satisfaite. Pour (b), soit / e C et écrivons d(f) sous la forme

S ga <8) K. On a
a

(lc ® 0 d(f))I ga ® i(ha)

et l'on doit voir que £ ga-i{ha) e(/)• L Or, si y e T, on a

lga(y)i(ha)(y) Hga(y)ha(y-1) d(f) (y,y~l)
f(y.y~l) f(i) e(f),

d'où la formule voulue.)

(vii) Soit G Spec(C) le schéma en groupes attaché à C. Tout élément

Y e T définit un morphisme f^f(y) de C dans K, donc un élément du

groupe G{K) des points de G à valeurs dans K. L'application T - G(K) ainsi

définie est un Homomorphismen cela résulte de la définition de la loi de

composition de G{K).
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(viii) D'après le n° 4.1, tout T-module à droite E de rang fini est muni

canoniquement d'une structure de C-comodule à gauche de rang fini (et

inversement). Plus précisément, si (Vi)ieI est une base de E, et si l'on a

(5) vty £ Cjj(y)Vj,avec e
jel

le coproduit de E est donné par:

(6) dE(vi) £ ® Vj
jsJ

(ix) La correspondance définie ci-dessus entre T-modules à droite de rang
fini et C-comodules à gauche de rang fini est compatible avec les opérations

«produit tensoriel» et «contragrédiente»; cela résulte de ce qui a été dit au
n° 3.2, combiné avec (vii) ci-dessus.

Remarque. On peut caractériser G Spec(C) par la propriété universelle
suivante: tout homomorphisme de T dans le groupe H{K) des ^-points d'un
schéma en groupe affine H se prolonge de manière unique en un morphisme
G -> H. Le foncteur r ^ G est donc adjoint du foncteur H(K).

4.3. L'enveloppe d'un groupe relativement à une catégorie de
REPRÉSENTATIONS

On conserve les notations du numéro précédent.

Définition 1. Soit L une sous-catégorie pleine de la catégorie des
T-modules à gauche de rang fini. On dit que L est saturée si L vérifie les
conditions suivantes:

a) Si E e L et si E est isomorphe, soit à un quotient de E, soit à

un sous-objet de E, on a F e L.
b) L est stable par somme directe finie, produit tensoriel et

contragrédiente.

c) La représentation unité (de module K) appartient à L. (Bien
entendu, on a une notion analogue pour les T-modules à droite.)

Théorème 1. Si L est saturée, il existe une sous-bigèbre CL de
C(T) et une seule telle que L soit la catégorie des CL-comodules à droite
de rang fini. La bigèbre CL contient l'élément 1, vérifie les axiomes du
n° 3.1, et est stable par l'inversion i.

Cela résulte des props. 2 et 3 du n° 3.3.
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