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62 J.-P. SERRE

DEFINITION 3. Soit C une bigebre possédant une inversion. Un
C-comodule E de rang fini est dit fidéle si C(E® E) = C

Vu ce qui précede, E est fidéle si et seulement si G = Gg est un isomor-
phisme.

PROPOSITION 8. Si E est fideéle, toute représentation linéaire de G est
quotzent d’une sous-représentation d’une somme directe de représentations

®(E @ E).

Cela résulte du lemme 1 du n° 2.4.

COROLLAIRE. Tout G-module simple est quotient de Jordan-Hélder
dun ® (E@ E).
Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-

sorielles de E @ E par les représentations ® E ® det(E) -, avec des
notations évidentes.

2) Il se peut que Gy soit fermé dans Endg (et non pas seulement dans
GLz), autrement dit que C(£) = C(E @ 133/) C’est le cas, par exemple, si Gg
est contenu dans SLz. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E @l\:} par celles de E.

§4. ENVELOPPES

4.1. COMPLETION D’UNE ALGEBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algebre associative a ¢€lément unité. Soit S, (resp. S, S)
I’ensemble des idéaux a droite (resp. a gauche, resp. bilatéres) de codimension
finie dans A. On a S; N S; = S et S est cofinal & la fois dans S, et dans S,;
en effet, si a € S, par exemple, I’annulateur du 4-module A/a appartient a S
et est contenu dans a.

On posera:

A =1lim.A/a
«

la limite projective étant prise sur I’ensemble ordonné filtrant S. L’algebre A
est [’algébre profinie complétée de A, pour la topologie définie par S (ou S,,
ou S,, cela revient au méme). Il y a un isomorphisme évident de la catégorie
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des A-modules de rang fini sur celle des A-modules topologiques discrets de
rang fini.

Soit F le dual de 4; on le munit de sa structure naturelle de A-bimodule.
Si a € S, soit F, I'orthogonal de a dans F. Soit C la réunion des Fy, pour
a €S. Le dual de C (resp. le dual topologique de AA) s’identifie de fagon
évidente a A (resp. a C). D’aprés le n°® 2.2, il y a donc sur C une structure
de cogeébre, caractérisée par la formule:

() <d(@,a®b>=<c,ab> si ceC,a,beA.

De plus, tout A-module a droite de rang fini est muni canoniquement d’une
structure de comodule a gauche sur C, et réciproquement; on a

(2) <dg(x),a@®x'>=<xa,x'> si xeEx"eE',aeA

d’aprés la formule (1) du n° 2.2.
Les éléments de la cogeébre C peuvent &tre caractérisés de la maniere
suivante:

LEMME 1. Soit f un élément du dual F de A. Les conditions
suivantes sont équivalentes:

(@) feC.

(b) (resp. (b")) Le sous-A-module a gauche (resp. a droite) de F
engendré par f est de rang fini.

(¢c) Il existe un A-module a droite E de rang fini, et des éléments
xi€ E,x[ € E' en nombre fini, tels que
<\f, a> =Y <xa,x;> pourtout acA.

La condition (b) signifie que I’annulateur de f dans le A-module a
gauche F appartient & S,;; comme S est cofinal dans S,, cela revient a dire
que f appartient 4 C. On démontre de méme que (a) & (b*).

D’autre part, pour un module £ donné, la condition (c) signifie que f
appartient a la sous-cogébre Cr de C attachée a E (cf. n° 2.1). Comme C est
réunion des Cg, cela prouve que (a) & (c).

[On laisse au lecteur le plaisir de démontrer directement I’équivalence
(b) & (0).]

4.2. LA BIGEBRE D’UN GROUPE

On applique ce qui précéde a I’algébre 4 = K[I'] d’un groupe I'. Le dual
F=F) de A est Iespace des fonctions sur T'; la dualité entre A et F
s’exprime par la formule:

<[ LAvi> =Y Aif(v)) si feF,AeK,y,el.
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