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Soit d'autre part cf:C(x)C->C(x)C(x)Cle coproduit du comodule C (g) C.

On vérifie sans difficulté que l'on a

d'(a (g) b) Yé aibJ ® xi ® XJ >

ij
d'où

(**) <pu(C (X) C) (a (g) ô) 2 i/(ûr/6/) (g) ® xy

ij
En comparant (*) et (**), on voit que (pU(C ® C) (pM(C) ® cpw(C) si w est

un homomorphisme d'algèbres. Pour prouver la réciproque, choisissons pour
(Xj)i / une base telle que 1 pour un élément 0 e / et e(x;) 0 pour
i ^ 0. On a alors a0 a et b0 ù, et l'égalité de (*) et (**) entraîne

u(a)u(b) u(ab), ce qui achève la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.

En effet, un élément de G(KX) est par définition un homomorphisme
d'algèbres u\C~+ K\ tel que u( 1) 1. La seule chose à vérifier, c'est que,

pour tout comodule E, l'endomorphisme u(E) de Kx (g) E défini par u est

égal à (pw(ii): or c'est justement la définition de u(E), cf. démonstration de

la prop. 1.

Exemple. Prenons pour K{ l'algèbre des nombres duaux sur K. La

prop. 4 fournit alors un anti-isomorphisme de l'algèbre de Lie de G sur la sous-

algèbre de Lie de End(i>) formée des endomorphismes 0 de u tels que

Q(K) 0 et 0(^ (g) E2) - Q(Et) ® lEl + \Ei ® 9(30 •

3.5. Interprétation de G comme limite projective de groupes
ALGÉBRIQUES LINÉAIRES

Définition 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algèbre sur K.

Proposition 5. Soit C une bigèbre (resp. une bigèbre possédant une
inversion i). Alors C est limite inductive filtrante de ses sous-bigèbres de type

fini contenant 1 (resp. et stables par i).

L'énoncé contenant les «resp.» équivaut à:

Corollaire. Le schéma en groupes G associé à C est limite

projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit E un C-comodule (à droite, pour
changer un peu) de rang fini et soit CE la sous-cogèbre de C correspondante.
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Pour tout n ^ 0, soit CE(n) la sous-cogèbre attachée au comodule ® E\
n

pour n 0, on convient comme d'ordinaire que (x) E K, de sorte que

C^(0) K. 1. On sait (cf. lemme 1) que

CE(n) CE...CE (n facteurs)

Il en résulte que

C(£)= I CE(n)
ri 0

est la sous-algèbre de C engendrée par CE et 1. D'où:

Proposition 6. L'algèbre C(E) est une sous-bigèbre de C contenant

1 et de type fini; c'est la plus petite sous-bigèbre de C contenant 1

et CE.

Comme C est visiblement limite inductive des C(E), cela démontre la

première partie de la prop. 5. D'autre part, lorsque C possède une
inversion /, la seconde partie de la prop. 5 résulte de la proposition plus précise

(mais évidente) suivante:

Proposition 7. L'algèbre C(E@E) est une sous-bigèbre de C

contenant 1 et stable par i; c'est la plus petite sous-bigèbre de C ayant
ces propriétés; elle est de type fini.

Si l'on note XE (resp. GE) le monoïde (resp. groupe) algébrique linéaire
associé à C(E) (resp. à C(E © E)), on voit que l'on a

G \im.XE (resp. G lim.G^)

Remarques

1) La construction de C(E © É) à partir de C(E) peut aussi se faire de

la manière suivante: au G-module E est associé un élément «déterminant»
6e, qui est un élément inversible de C, contenu dans C{E). On a:

C(E ®E) C(E)
1

&E

2) L'interprétation de XE et GE en termes de schémas est la suivante:
XE (resp. Ge) est le plus petit sous-schéma fermé du schéma End£ (resp.
GL£) des endomorphismes (resp. automorphismes) de E contenant l'image de
la représentation p : G End^ attachée à E. Cela se vérifie immédiatement
sur la construction de l'algèbre affine de End^ (resp. GE), construction que
le rédacteur trouve inutile de reproduire.
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Définition 3. Soit C une bigèbre possédant une inversion. Un
C-comodule E de rang fini est dit fidèle si C(E © È) C.

Vu ce qui précède, E est fidèle si et seulement si G -> GE est un isomor-
phisme.

Propositions. Si E est fidèle, toute représentation linéaire de G est

quotient d'une sous-représentation d'une somme directe de représentations
®{E@É).

Cela résulte du lemme 1 du n° 2.4.

Corollaire. Tout G-module simple est quotient de Jordan-Hölder
d'un ® {E © È).

Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-
v n m

sorielles de E®E par les représentations © E ® det (E) ~1, avec des

notations évidentes.

2) Il se peut que GE soit fermé dans End^ (et non pas seulement dans

GL£), autrement dit que C(E) C(E © E). C'est le cas, par exemple, si GE

est contenu dans SL^. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E © E par celles de E.

§4. Enveloppes

4.1. COMPLÉTION D'UNE ALGÈBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algèbre associative à élément unité. Soit Sd (resp. Sg9S)
l'ensemble des idéaux à droite (resp. à gauche, resp. bilatères) de codimension

finie dans A. On a Sd n Sg S et S est cofinal à la fois dans Sd et dans Sg;

en effet, si o e Sg par exemple, l'annulateur du ^4-module A/a appartient à S

et est contenu dans a.

On posera:

A lim.^4/a
<—

la limite projective étant prise sur l'ensemble ordonné filtrant S. L'algèbre A
est l'algèbre profinie complétée de A, pour la topologie définie par S (ou Sd,

ou 5g, cela revient au même). Il y a un isomorphisme évident de la catégorie
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