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Soit d’autre part d’': C ® C—> C ® C ® C le coproduit du comodule C ® C.
On vérifie sans difficulté que 'on a
d@®b) =) ab;®x®x;,
iJ
d’ou
(**) 0 (CRC)a®Db)= ) ul@b) ®xQx; .
iJ
En comparant (*) et (**), on voit que ¢,(C ® C) = ¢,(C) ® ¢,(C) si u est
un homomorphisme d’algebres. Pour prouver la réciproque, choisissons pour
(x;); <7 une base telle que x, = 1 pour un élément 0 € I et e(x;) = 0 pour
i#0. On a alors q,=a et b, = b, et 1’égalité de (*) et (**) entraine
u(a)u(b) = u(ab), ce qui acheve la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.
En effet, un ¢lément de G(K,) est par définition un homomorphisme
d’algébres u: C — K, tel que u(l) = 1. La seule chose a vérifier, c’est que,
pour tout comodule E, I’endomorphisme u(E) de K, ® E défini par u est
égal a @,(E): or c’est justement la définition de u(E), cf. démonstration de
la prop. 1.

Exemple. Prenons pour K, l’algebre des nombres duaux sur K. La
prop. 4 fournit alors un anti-isomorphisme de /’algebre de Lie de G sur la sous-
algébre de Lie de End(v) formée des endomorphismes 6 de v tels que

0(K)=0 et BE®E)=0E)® L+ 1z ® 0(E) .

3.5. INTERPRETATION DE (G COMME LIMITE PROJECTIVE DE GROUPES
ALGEBRIQUES LINEAIRES

DEFINITION 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algébre sur K.

PROPOSITION 5. Soit C une bigébre (resp. une bigébre possédant une
inversion ). Alors C est limite inductive filtrante de ses sous-bigébres de type
fini contenant 1 (resp. et stables par i).

L’énoncé contenant les «resp.» équivaut a:

COROLLAIRE. Le schéma en groupes G associé a C est limite
projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit £ un C-comodule (4 droite, pour
changer un peu) de rang fini et soit Cg la sous-cogebre de C correspondante.
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- n
Pour tout n > 0, soit Cg(n) la sous-cogebre attachnée au comodule & E;

pour n = 0, on convient comme d’ordinaire que ® E = K, de sorte que
Cr(0) = K.1. On sait (cf. lemme 1) que

Cr(n) = Cg...Cr  (n facteurs) .

Il en résulte que

CE)= Y Cu(n)
n=20

est la sous-algébre de C engendrée par Cg et 1. D’ou:

PROPOSITION 6. L’algébre C(E) est une sous-bigébre de C conte-
nant 1 et de type fini; c’est la plus petite sous-bigébre de C contenant 1
et Cg.

Comme C est visiblement limite inductive des C(F), cela démontre la
premiere partie de la prop. 5. D’autre part, lorsque C possede une
inversion i, la seconde partie de la prop. 5 résulte de la proposition plus précise
(mais évidente) suivante:

PROPOSITION 7. L’algebre C(E @ l\f) est une sous-bigebre de C
contenant 1 et stable par i; c’est la plus petite sous-bigebre de C ayant
ces propriétés; elle est de type fini.

Si ’on note Xg (resp. Gg) le monoide (resp. groupe) algébrique linéaire
associé¢ a C(E) (resp. a C(E @ E)), on voit que ’on a

G = ligl.XE (resp. G = Ign.GE) .

Remarques

. vV \ . . .
1) La construction de C(E @ E) a partir de C(E) peut aussi se faire de
la maniere suivante: au G-module E est associé un élément «déterminant»
dg, qui est un élément inversible de C, contenu dans C(E). On a:

v 1
C(E® E) = C(E) [—] .
Og

2) L’interprétation de X et Gg en termes de schémas est la suivante:
Xg (resp. Gg) est le plus petit sous-schéma fermé du schéma Endg (resp.
GLr) des endomorphismes (resp. automorphismes) de E contenant I’image de
la représentation p: G — Endy attachée & E. Cela se vérifie immédiatement
sur la construction de I’algébre affine de Endy (resp. Gg), construction que
le rédacteur trouve inutile de reproduire.
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DEFINITION 3. Soit C une bigebre possédant une inversion. Un
C-comodule E de rang fini est dit fidéle si C(E® E) = C

Vu ce qui précede, E est fidéle si et seulement si G = Gg est un isomor-
phisme.

PROPOSITION 8. Si E est fideéle, toute représentation linéaire de G est
quotzent d’une sous-représentation d’une somme directe de représentations

®(E @ E).

Cela résulte du lemme 1 du n° 2.4.

COROLLAIRE. Tout G-module simple est quotient de Jordan-Hélder
dun ® (E@ E).
Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-

sorielles de E @ E par les représentations ® E ® det(E) -, avec des
notations évidentes.

2) Il se peut que Gy soit fermé dans Endg (et non pas seulement dans
GLz), autrement dit que C(£) = C(E @ 133/) C’est le cas, par exemple, si Gg
est contenu dans SLz. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E @l\:} par celles de E.

§4. ENVELOPPES

4.1. COMPLETION D’UNE ALGEBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algebre associative a ¢€lément unité. Soit S, (resp. S, S)
I’ensemble des idéaux a droite (resp. a gauche, resp. bilatéres) de codimension
finie dans A. On a S; N S; = S et S est cofinal & la fois dans S, et dans S,;
en effet, si a € S, par exemple, I’annulateur du 4-module A/a appartient a S
et est contenu dans a.

On posera:

A =1lim.A/a
«

la limite projective étant prise sur I’ensemble ordonné filtrant S. L’algebre A
est [’algébre profinie complétée de A, pour la topologie définie par S (ou S,,
ou S,, cela revient au méme). Il y a un isomorphisme évident de la catégorie
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