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[Il y a un résultat plus général, dû sauf erreur à Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme

ici, une sous-cogèbre d'une bigèbre, on se donne seulement une cogèbre D et

une opération de «produit tensoriel» sur la catégorie M ComfD

correspondante (la donnée de D est d'ailleurs équivalente à celle du couple formé
de M et du foncteur u: M -> Vect^, cf. n° 2.5, th. 3). En imposant
à ce produit tensoriel des conditions raisonnables (en particulier
v(E 0 F) — v{E) (x) v(F)) on démontre alors qu'il provient d'une structure de

bigèbre bien déterminée sur D\ cette bigèbre a un élément unité si M contient
un élément unité pour le produit tensoriel; elle a une inversion, si l'on se donne

une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur «Horn».)

Grothendieck a rencontré cette situation avec K Q, M catégorie des

motifs sur un corps de base k et v foncteur «cohomologie à valeurs
dans Q» relativement à un plongement de k dans C.]

3.4. Une interprétation des points de G

Soit K{ e Alg^ et soit g e G(KX) un point de G à valeurs dans Kx. Pour
tout E e Comfc, notons g(E) l'image de g par l'antireprésentation

Q(E):G(Ki)^EndE(Ki)
On a donc g(E) e End^i) End^C^ (x) E), et de plus:

(i) g(K) lKl

(ii) g(Ei®E2) g(Ei) ® g(E2).

Réciproquement :

Proposition 4. Soit vKl : Coniç. Modj^ le foncteur qui associe à
tout E e Com£ le Kx-module Kx (x) E. Soit (p: Vxl un endo-
morphisme de uKl vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(KX) tel que cp g.

D'après 3.2, l'application G(KX) - End^) est un antihomomorphisme
de monoïdes. La prop. 4 donne donc:

Corollaire. Le monoïde G(KX) est isomorphe à l'opposé du
monoïde des endomorphismes de vKl vérifiant (i) et (ii).

[C'est là un résultat analogue au théorème de dualité de Tannaka; on
reviendra là-dessus plus loin.]
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Remarques

1) Dans l'énoncé de la prop. 4, on peut remplacer Comfc par Comc;
cela revient au même, du fait que tout objet de Comc est limite inductive
d'objets de ComfC) cf. §1.

2) Lorsque G est un schéma en groupes, les g{E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(iii) g(É) g(E)\
Démonstration de la proposition 4.

Tout d'abord, soit u e Hom(C, Ki). Pour tout E e Comc, soit cpu(E)

l'endomorphisme de Kx (x) E qui prolonge l'application linéaire
dE u (g) 1

E 4 C®E Ki (g) E

On obtient ainsi un endomorphisme cpu de uKl -

Lemme 1. L'application u cpM est un isomorphisme de Hom(C, Kx}
sur le groupe des endomorphismes du Joncteur uKl.

[En fait, c'est un isomorphisme de j^-algèbres, à condition de mettre sur

Hom(C, Ki) la structure d'algèbre opposée de celle à laquelle on pense.]

Si cp e Bnd(^), formons le composé

C -> Ki® C ^ Ki® C Ki

(la première application étant x 1 (x) x, la seconde (p (C) et la troisième

I (x) e). On obtient une application linéaire

u (cp) : C -> K\

II suffit de prouver que les applications u e* cpw et cp^w(cp) sont inverses

l'une de l'autre.
Tout d'abord, si u e Hom(C, Ki), u(cpM) est le composé

d u <g) 1 1 (g) e

c-»c®c^^®c-» Ji:,,

ou encore
d 1 ® e u

C-+ C (x) C C-+Kl

c'est-à-dire w.

Soit maintenant cp e End(^). Si E est un comodule, et V un K-qspace

vectoriel, on a cp (E (x) E) cp (E) ® 1 f • (Se ramener au cas où V est de

dimension finie, puis choisir une base de V et utiliser le fait que cp est un
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morphisme de foncteurs.) En particulier, on a ^(C®!?) — (p(C) ® \E si

E e Comc. Comme dE : E C ® E est un morphisme de comodules, on a un

diagramme commutatif:
1 (g) dE

E -»• ^ ® £ -> Ki (g) C

(|)(£) I <p(C)® 1 1

1 0 C(g) 1 _^ (g) E -> 0 c (g) £ ® £.
1 <g> dE

Mais le composé (1 ® c (x) 1) ° (1 ® dE) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
q> (E)

E Ki ® E Kl ®E
est égal à (pu(£), avec u u(tp), d'où le lemme.

[Ce lemme n'a rien à voir avec les bigèbres. On aurait pu le remonter

au §2 et le déduire de l'isomorphisme Com£ ComfAo du n° 2.2.]

Lemme 2. (a) Pour que (pw vérifie la relation (i), il faut et il suffit
que u{ 1) 1.

(b) Pour que (pM vérifie la relation (ii), il faut et il suffit que u soit

un homomorphisme d'algèbres.

Si l'on prend pour E le module unité K, on a Ki (x) E K\ et (pU(E) est

la multiplication par u(1) dans Kx \ d'où (a).

Pour (b), on remarque d'abord que (ii) est vérifiée si et seulement si elle

l'est pour Ei E2 - C, i.e. si

(ii') (pM(C (x) C) cpw(C) (x) (pM(C).

Cela résulte simplement de ce que tout comodule est isomorphe à un sous-
comodule d'une somme directe de comodules tous isomorphes à C.

Reste à exprimer la condition (ii7). Soit (Xi)ieI une base de C, soient

a, b e C, et écrivons d(a) et d(b) sous la forme

d(a) £ ai (x) Xi, ai e C

d(b) £ bj ® Xj bj e C

On a alors:

cpw(C) {a) £ u(ai) ® */ > avec u{at) e Ky
et

(pu(C) (b) Y u(bj) ® Xj, avec u(bj) e K{

D'où:

(*) ((Pii(C) (g) cpu(C)) (a® b) - £ u(ai)u(bj) ® xt ® Xj



60 J.-P. SERRE

Soit d'autre part cf:C(x)C->C(x)C(x)Cle coproduit du comodule C (g) C.

On vérifie sans difficulté que l'on a

d'(a (g) b) Yé aibJ ® xi ® XJ >

ij
d'où

(**) <pu(C (X) C) (a (g) ô) 2 i/(ûr/6/) (g) ® xy

ij
En comparant (*) et (**), on voit que (pU(C ® C) (pM(C) ® cpw(C) si w est

un homomorphisme d'algèbres. Pour prouver la réciproque, choisissons pour
(Xj)i / une base telle que 1 pour un élément 0 e / et e(x;) 0 pour
i ^ 0. On a alors a0 a et b0 ù, et l'égalité de (*) et (**) entraîne

u(a)u(b) u(ab), ce qui achève la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.

En effet, un élément de G(KX) est par définition un homomorphisme
d'algèbres u\C~+ K\ tel que u( 1) 1. La seule chose à vérifier, c'est que,

pour tout comodule E, l'endomorphisme u(E) de Kx (g) E défini par u est

égal à (pw(ii): or c'est justement la définition de u(E), cf. démonstration de

la prop. 1.

Exemple. Prenons pour K{ l'algèbre des nombres duaux sur K. La

prop. 4 fournit alors un anti-isomorphisme de l'algèbre de Lie de G sur la sous-

algèbre de Lie de End(i>) formée des endomorphismes 0 de u tels que

Q(K) 0 et 0(^ (g) E2) - Q(Et) ® lEl + \Ei ® 9(30 •

3.5. Interprétation de G comme limite projective de groupes
ALGÉBRIQUES LINÉAIRES

Définition 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algèbre sur K.

Proposition 5. Soit C une bigèbre (resp. une bigèbre possédant une
inversion i). Alors C est limite inductive filtrante de ses sous-bigèbres de type

fini contenant 1 (resp. et stables par i).

L'énoncé contenant les «resp.» équivaut à:

Corollaire. Le schéma en groupes G associé à C est limite

projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit E un C-comodule (à droite, pour
changer un peu) de rang fini et soit CE la sous-cogèbre de C correspondante.
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