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[I1 y a un résultat plus général, di sauf erreur a Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme
ici, une sous-cogébre d’une bigébre, on se donne seulement une cogébre D et
une opération de «produit tensoriel» sur la catégorie M = Com?, corres-
pondante (la donnée de D est d’ailleurs équivalente a celle du couple formeé
de M et du foncteur v: M — Vectg, cf. n® 2.5, th. 3). En imposant
a ce produit tensoriel des conditions raisonnables (en particulier
V(E Q F) =v(E) ® v(F)) on démontre alors qu’il provient d’une structure de
bigébre bien déterminée sur D; cette bigébre a un élément unité si M contient
un €élément unité pour le produit tensoriel; elle a une inversion, si I’on se donne
une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur « Hom».)

Grothendieck a rencontré cette situation avec K = Q, M = catégorie des
motifs sur un corps de base k et v = foncteur «cohomologie a valeurs
dans Q» relativement a un plongement de k£ dans C.]

3.4. UNE INTERPRETATION DES POINTS DE G

Soit K; € Algg et soit g € G(K;) un point de G a valeurs dans K;. Pour
tout E € Com{;, notons g(E) I’image de g par I’antireprésentation

P(E): G(K1) = Endg(K;) .
On a donc g(F) € Endg(K;) = Endg (K; ® E), et de plus:
(1) gK) = I,

(i) g(E ® Ey) = g(E1) ® g(Ey).
Réciproquement:

PROPOSITION 4. Soit Vg, Com{:—+ Modk, le foncteur qui associe a
tout E e Comy le Ki-module K, ® E. Soit ¢:vx,— vy, un endo-
morphisme de vk, vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(K,) tel que ¢ = g.

D’aprés 3.2, I’application G(K;) — End (v k,) €st un antihomomorphisme
de monoides. La prop. 4 donne donc:

COROLLAIRE. Le monoide G(K,) est isomorphe a I’opposé du
monoide des endomorphismes de Vg, Vvérifiant (i) et (ii).

[C’est 1a un résultat analogue au théoréme de dualité de Tannaka; on
reviendra la-dessus plus loin.]
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Remarques

1) Dans I’énoncé de la prop. 4, on peut remplacer Com’é par Comc;
cela revient au méme, du fait que tout objet de Com, est limite inductive
d’objets de Com”., cf. §1.

2) Lorsque G est un schéma en groupes, les g(E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(i) g(&) = g(E)".
Démonstration de la proposition 4.

Tout d’abord, soit ¥ € Hom(C, K;). Pour tout £ € Com¢, soit ¢,(E)
I’endomorphisme de K; ® E qui prolonge I’application linéaire

EXcES KQE.

On obtient ainsi un endomorphisme ¢, de v, .

LEMME 1. L’application u— ¢, estun isomorphisme de Hom(C, K;)
sur le groupe des endomorphismes du foncteur vg,.

[En fait, c’est un isomorphisme de K;-algébres, a condition de mettre sur
Hom (C, K,) la structure d’algébre opposée de celle a laquelle on pense.]

Si @ € End(vk,), formons le composé
C—K & C—K, X C — K,
(la premiére application étant x — 1 ® x, la seconde ¢(C) et la troisieéme
1 ® ¢). On obtient une application linéaire
u(p): C - K, .

Il suffit de prouver que les applications u— @, et @ = u(p) sont inverses
I’une de 'autre.
Tout d’abord, si u € Hom(C, K,), u(p,) est le composé

d u®1 I1®e
Co-CRC - K ®C — K,
ou encore
d 1Qe u
C-CRC - C—K,

c’est-a-dire u.

Soit maintenant ¢ € End(vg,). Si E est un comodule, et ¥ un K-espace
vectoriel, on a O(EQ® V) = ¢(E) ® 1y. (Se ramener au cas ou V est de
dimension finie, puis choisir une base de V et utiliser le fait que ¢ est un
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morphisme de foncteurs.) En particulier, on a P(CRE)=0¢(C)® lg si
E € Comc. Comme dg: E— C® E est un morphisme de comodules, on a un
diagramme commutatif:

12

E - KQE Ki®QCQRE

oE) | eC)® 11
K®E = KQ®COE

E

105 KQE.
Mais le composé (1 ®e® 1) o (1 ® dg) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
®(E)

E-K ®FE — K QE

est égal a 9,(E), avec u = u(@), d’ou le lemme.

[Ce lemme n’a rien a voir avec les bigeébres. On aurait pu le remonter
au §2 et le déduire de I’isomorphisme Com¢ = Com7”, du n° 2.2.]

LEMME 2. (a) Pour que ¢, vérifie la relation (i), il faut et il suffit
que u(l) =1.

(b) Pour que ¢, vérifie la relation (ii), il faut et il suffit que u soit
un homomorphisme d’algébres. |

Si ’on prend pour E le module unité K, on a K; ® E = K; et ¢,(E) est
la multiplication par u(1) dans K;; d’ou (a).

Pour (b), on remarque d’abord que (ii) est vérifiée si et seulement si elle
I’est pour E; = E, = C, i.e. si

(i) 0u(C® C) = 0u(C) @ 9u(C).

Cela résulte simplement de ce que tout comodule est isomorphe a un sous-
comodule d’une somme directe de comodules tous isomorphes a C.

Reste a exprimer la condition (ii’). Soit (x;);<; une base de C, soient
a,b e C, et écrivons d(a) et d(b) sous la forme

da)=Ya®x, aeC
d(b)=Ebj®xj, bJ'EC.
On a alors:

0.(C)(@) = Yu(a)®x;, avec u(a) €Kk
et

0.(C)(D) = Yub)®x;, avec u(b;)ek,.
D’ou:

*) (0(C) ® 0.(C) (@ ® b) = Y, u(@)ud;)  x; ® x; .

ij
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Soit d’autre part d’': C ® C—> C ® C ® C le coproduit du comodule C ® C.
On vérifie sans difficulté que 'on a
d@®b) =) ab;®x®x;,
iJ
d’ou
(**) 0 (CRC)a®Db)= ) ul@b) ®xQx; .
iJ
En comparant (*) et (**), on voit que ¢,(C ® C) = ¢,(C) ® ¢,(C) si u est
un homomorphisme d’algebres. Pour prouver la réciproque, choisissons pour
(x;); <7 une base telle que x, = 1 pour un élément 0 € I et e(x;) = 0 pour
i#0. On a alors q,=a et b, = b, et 1’égalité de (*) et (**) entraine
u(a)u(b) = u(ab), ce qui acheve la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.
En effet, un ¢lément de G(K,) est par définition un homomorphisme
d’algébres u: C — K, tel que u(l) = 1. La seule chose a vérifier, c’est que,
pour tout comodule E, I’endomorphisme u(E) de K, ® E défini par u est
égal a @,(E): or c’est justement la définition de u(E), cf. démonstration de
la prop. 1.

Exemple. Prenons pour K, l’algebre des nombres duaux sur K. La
prop. 4 fournit alors un anti-isomorphisme de /’algebre de Lie de G sur la sous-
algébre de Lie de End(v) formée des endomorphismes 6 de v tels que

0(K)=0 et BE®E)=0E)® L+ 1z ® 0(E) .

3.5. INTERPRETATION DE (G COMME LIMITE PROJECTIVE DE GROUPES
ALGEBRIQUES LINEAIRES

DEFINITION 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algébre sur K.

PROPOSITION 5. Soit C une bigébre (resp. une bigébre possédant une
inversion ). Alors C est limite inductive filtrante de ses sous-bigébres de type
fini contenant 1 (resp. et stables par i).

L’énoncé contenant les «resp.» équivaut a:

COROLLAIRE. Le schéma en groupes G associé a C est limite
projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit £ un C-comodule (4 droite, pour
changer un peu) de rang fini et soit Cg la sous-cogebre de C correspondante.
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