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56 J.-P. SERRE

3.3. SOUS-BIGEBRES

(On suppose a nouveau que K est un corps.)
Soit C une bigebre (vérifiant les conditions du n° 3.1), et soit L une sous-
catégorie abélienne de Com’é vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d’une sous-cogébre D de C.

PROPOSITION 2. Pour que D soit une sous-bigébre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le
comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par ® et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogébres Cg attachées
aux comodules £ € L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

LEMME 1. Si E et F sont des comodules de rang fini, on a
(*) CE@F:CE-CF-

En effet, on vérifie tout de suite que Cr ® Cr est la sous-cogébre de C ® C
attachée au C ® C-comodule E ® F. Comme Cggr est I'image de cette
derniere par m: C ® C — C, c’est bien Cg.Cr.

Le fait que D contienne 1 provient de ce que Cr = K.1 si £ = K.

PROPOSITION 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
«contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Ce=i(Cg) .

COROLLAIRE. Supposons que G = Spec(C) soit un schéma en
groupes. Soit Mod{; la catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Modé. Pour qu’il existe un quotient H
de G tel que L = Mod%, il faut et il suffit que L vérifie les condi-
tions 1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations
«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n’est qu’une reformulation des props. 2 et 3, étant entendu que
«groupe quotient» est pris pour synonyme de «sous-bigebre contenant 1».
L’unicité de H provient du th. 2 du n° 2.4.
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[I1 y a un résultat plus général, di sauf erreur a Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme
ici, une sous-cogébre d’une bigébre, on se donne seulement une cogébre D et
une opération de «produit tensoriel» sur la catégorie M = Com?, corres-
pondante (la donnée de D est d’ailleurs équivalente a celle du couple formeé
de M et du foncteur v: M — Vectg, cf. n® 2.5, th. 3). En imposant
a ce produit tensoriel des conditions raisonnables (en particulier
V(E Q F) =v(E) ® v(F)) on démontre alors qu’il provient d’une structure de
bigébre bien déterminée sur D; cette bigébre a un élément unité si M contient
un €élément unité pour le produit tensoriel; elle a une inversion, si I’on se donne
une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur « Hom».)

Grothendieck a rencontré cette situation avec K = Q, M = catégorie des
motifs sur un corps de base k et v = foncteur «cohomologie a valeurs
dans Q» relativement a un plongement de k£ dans C.]

3.4. UNE INTERPRETATION DES POINTS DE G

Soit K; € Algg et soit g € G(K;) un point de G a valeurs dans K;. Pour
tout E € Com{;, notons g(E) I’image de g par I’antireprésentation

P(E): G(K1) = Endg(K;) .
On a donc g(F) € Endg(K;) = Endg (K; ® E), et de plus:
(1) gK) = I,

(i) g(E ® Ey) = g(E1) ® g(Ey).
Réciproquement:

PROPOSITION 4. Soit Vg, Com{:—+ Modk, le foncteur qui associe a
tout E e Comy le Ki-module K, ® E. Soit ¢:vx,— vy, un endo-
morphisme de vk, vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(K,) tel que ¢ = g.

D’aprés 3.2, I’application G(K;) — End (v k,) €st un antihomomorphisme
de monoides. La prop. 4 donne donc:

COROLLAIRE. Le monoide G(K,) est isomorphe a I’opposé du
monoide des endomorphismes de Vg, Vvérifiant (i) et (ii).

[C’est 1a un résultat analogue au théoréme de dualité de Tannaka; on
reviendra la-dessus plus loin.]
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