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56 J.-P. SERRE

3.3. SOUS-BIGÈBRES

(On suppose à nouveau que K est un corps.)
Soit C une bigèbre (vérifiant les conditions du n° 3.1), et soit L une sous-

catégorie abélienne de Com£ vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d'une sous-cogèbre D de C.

Proposition 2. Pour que D soit une sous-bigèbre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le

comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par 0 et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogèbres CE attachées

aux comodules E e L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

Lemme 1. Si E et F sont des comodules de rang fini, on a

(*) CE 0 F CE. CF

En effet, on vérifie tout de suite que CE 0 CF est la sous-cogèbre de C 0 C
attachée au C 0 C-comodule E (S) F. Comme Ce®f est l'image de cette
dernière par m : C 0 C C, c'est bien CE.CF.

Le fait que D contienne 1 provient de ce que CE K. 1 si E K.

Proposition 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
« contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Cë= i(CE)

Corollaire. Supposons que G Spec(C) soit un schéma en

groupes. Soit Mod ^ Ici catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Mod^. Pour qu'il existe un quotient H
de G tel que L Mod^, il faut et il suffit que L vérifie les conditions

1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations

«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n'est qu'une reformulation des props. 2 et 3, étant entendu que

«groupe quotient» est pris pour synonyme de «sous-bigèbre contenant 1».

L'unicité de H provient du th. 2 du n° 2.4.
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[Il y a un résultat plus général, dû sauf erreur à Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme

ici, une sous-cogèbre d'une bigèbre, on se donne seulement une cogèbre D et

une opération de «produit tensoriel» sur la catégorie M ComfD

correspondante (la donnée de D est d'ailleurs équivalente à celle du couple formé
de M et du foncteur u: M -> Vect^, cf. n° 2.5, th. 3). En imposant
à ce produit tensoriel des conditions raisonnables (en particulier
v(E 0 F) — v{E) (x) v(F)) on démontre alors qu'il provient d'une structure de

bigèbre bien déterminée sur D\ cette bigèbre a un élément unité si M contient
un élément unité pour le produit tensoriel; elle a une inversion, si l'on se donne

une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur «Horn».)

Grothendieck a rencontré cette situation avec K Q, M catégorie des

motifs sur un corps de base k et v foncteur «cohomologie à valeurs
dans Q» relativement à un plongement de k dans C.]

3.4. Une interprétation des points de G

Soit K{ e Alg^ et soit g e G(KX) un point de G à valeurs dans Kx. Pour
tout E e Comfc, notons g(E) l'image de g par l'antireprésentation

Q(E):G(Ki)^EndE(Ki)
On a donc g(E) e End^i) End^C^ (x) E), et de plus:

(i) g(K) lKl

(ii) g(Ei®E2) g(Ei) ® g(E2).

Réciproquement :

Proposition 4. Soit vKl : Coniç. Modj^ le foncteur qui associe à
tout E e Com£ le Kx-module Kx (x) E. Soit (p: Vxl un endo-
morphisme de uKl vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(KX) tel que cp g.

D'après 3.2, l'application G(KX) - End^) est un antihomomorphisme
de monoïdes. La prop. 4 donne donc:

Corollaire. Le monoïde G(KX) est isomorphe à l'opposé du
monoïde des endomorphismes de vKl vérifiant (i) et (ii).

[C'est là un résultat analogue au théorème de dualité de Tannaka; on
reviendra là-dessus plus loin.]
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