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52 J.-P. SERRE

(iv) La co-unité e: C -> K est un morphisme d'algèbres et e(Y) 1.

(v) On a d{1) 1 (x) 1.

La condition (iii) permet de considérer C comme Yalgèbre affine d'un schéma

affine G sur K; on a G Spec (C). Pour tout Kx e Alg^, on note G(KX)
l'ensemble des points de G à valeurs dans Kx, autrement dit l'ensemble des

morphismes (au sens de Alg*) de C dans Kx. La condition (iv) signifie
que e est un élément de G(K). Grâce aux conditions (i) et (v), la structure de

cogèbre de C peut être interprétée comme un morphisme de G x G dans G,

qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoïdes sur K; pour tout Kx e AlgKi G(KX) a une structure naturelle de

monoïde, d'élément neutre l'image de e dans G(KX), image que l'on se

permet de noter encore e.

On appelle inversion sur G, toute application i: C -> C ayant les propriétés
suivantes :

a) i est un morphisme d'algèbres, et /(1) 1.

b) m o (lç- (x) /) o d est égal à l'endomorphisme c e(c). 1 de G.

La condition a) permet d'interpréter i comme un morphisme I: G G et la
condition b) signifie que x.I{x) e pour tout x e G(KX), et tout Kx. On voit
ainsi que, si i existe, il est unique, et que c'est un isomorphisme de C sur la

bigèbre opposée C°. L'existence de i revient à dire que G est un schéma

en groupes.

Remarque. L'application identique C -> C est un point de G (G), appelé

point canonique; nous le noterons y. De même, on peut interpréter une
inversion i de C comme un point i de G (G) et la condition b) signifie que

y\ e.

3.2. Correspondance entre comodules et G-modules

Soit E un module. Si Kx e Alg*, nous noterons End^^) le monoïde des

endomorphismes du ^-module Kx (x) E, et AutE(KX) le groupe des éléments

inversibles de End^^i). Si Kx K2 est un morphisme, on définit de manière

évidente le morphisme correspondant de End^i^) dans End^iG)- Ainsi
End^ est un foncteur de Alg^ dans la catégorie Mon des monoïdes ; de même

AutE est un foncteur de Alg^ dans la catégorie Gr des groupes.
Soient maintenant C et G Spec (C) comme ci-dessus. On a vu que G

définit un foncteur (noté également G) de Alg^ dans Mon; ce foncteur est à

valeurs dans Gr si G est un schéma en groupes.

Définition 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur End^.
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En d'autres termes, p consiste en la donnée, pour tout Kx e Alg#, d'un

morphisme de monoïdes p(^Ti) : G(KX) End^^i) et, si Kx K2 est un

morphisme dans Alg^, le diagramme

G(KX) - G(K2)

p(*,) i l P(K2)

End£(K,)- End£(A-2)

doit être commutatif.

Terminologie. Une représentation linéaire du monoïde G0 opposé à G

est appelée une antireprésentation de G. Un module E, muni d'une
représentation (resp. antireprésentation) G-> End£ est appelé un G-module à

gauche (resp. à droite).

Remarque. Si G est un schéma en groupes, et si p: G End^ est une
représentation linéaire de G dans E, il est clair que p prend ses valeurs dans
le sous-foncteur AutE de End£.

Notons maintenant Gens le foncteur G, considéré comme foncteur à

valeurs dans Ens (i.e. le composé Alg^ -S Mon -> Ens); définissons de même

End|ns. Soit p un morphisme de Gens dans End^ns. L'image par p(C) du

point canonique y e G(C) est un C-endomorphisme de C (x) E, donc est

définie par une application ^-linéaire d(p) : E -* C 0 E.

Proposition 1. (a) L'application ç>^>d(ç>) est une bijection
de l'ensemble des morphismes de Gens dans End^ns sur l'ensemble
Hom(E, C <S) E).

(b) Pour que p: Gens End^ns soit une représentation linéaire (resp.
une antireprésentation linéaire) de G dans E, il faut et il suffit que d(p)
munisse E d'une structure de C-comodule à droite (resp. à gauche).

C'est là un résultat bien connu (cf. SGAD, exposé I). Rappelons la
démonstration :

L'assertion (a) provient de ce que Gens est représentable par le couple
(C, y). En particulier, si x e G(KX), l'image de x par p(^) est l'application
K\-linéaire de Kx (x) E dans K\ (x) E qui prolonge l'application linéaire
(x (g) U) o d(p) de E dans Kx (x) E.

Pour (b), on peut se borner au cas des antireprésentations. Il faut d'abord
exprimer que p(^) transforme e en 1 pour tout Kx, et il suffit de le faire
pour Kx K. Cela donne la condition

(e (x) 1E) o d(p) \E

qui est l'axiome (2) des comodules.
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Il faut ensuite exprimer que le diagramme

Gens x Gens

a I

P^P End|ns x End"

I ß

£pens
P

End^ns

(où a désigne la loi de composition de G et ß Vopposée de la loi de

composition de End^) est commutatif. Notons Yi (resp. y2) l'homo-
morphisme de C dans C (x) C qui applique x e C dans x (x) 1 (resp. 1 (x) x);
on a Yi, y2 e G(C (x) C). De plus, il est immédiat que le foncteur Gens x Gens

est représentable par (C (x) C, yi x y2). Il suffit donc d'exprimer que les deux

images de yx x y2 dans EndE(C (x) C) coïncident. Or l'image de Yi x y2 dans

G(C(x)C) est le point donné par d\C~*C®C\ son image dans

EndE(C (x) C), identifié à Hom(E, C (g) C (x) E) est donc (d (x) 1^) o d(p). Il
faut ensuite calculer l'image de Yi x y2 par G x G P^P End^ X End^ End^.
On trouve, après un calcul sans difficultés [cf. ci-après] l'élément

(lc ® rf(p» ° rf(p). La commutativité du diagramme considéré équivaut
donc à l'axiome (1) des comodules, ce qui achève de démontrer la proposition.

[Voici le «calcul sans difficultés» en question. Il s'agit de déterminer

l'image (p e End^(C(x) C) de Yi x y2 par ß o (p x p). Si cpi (resp. (p2) est

l'image de Yi (resp. y2) par p, on a cp cp2 o cpj (puisque ß est Y opposée de

la loi de composition). De plus, cp, est caractérisé par le fait de prolonger
l'application ^-linéaire (y, ® 1^) o c/(p) : E -+ C (x) E -+ C (x) C ® E. Soit

alors x e E, et posons:

d(p) (x) £ ^(x)Xi,d(p) (x,) £ Cy 0 Xy

On a:

<Pi W (Yi 0 l£) £ Ci 0 Xi) £ 0 1 0
De même:

<P2 (Jfl) I 1 ® Cy (g) X,7

D'où:

<p(x) cp2(<Pi(x)) £ (P2(c, (X) 1 (X) X,)

£ (c,- 0 1). £ 1 ® Cij 0 Xy (<p2 étant C 0 C-linéaire)

£ C; 0 Cy 0 Xy
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D'autre part, on a

((le ® d(p))o d{p))(X) (le ® p)) (I Ci ® X/)

IC, ® Cy ® Ay

En comparant, on voit bien que l'on a

(p (lc0rf(p)) ° ^(P) •]

Remarque. La proposition précédente permet donc d'identifier les

G-modules à gauche aux C-comodules à droite, et inversement. [Il est bien

triste d'avoir ainsi à échanger sa droite et sa gauche, mais on n'y peut rien.

Toutefois, lorsque G est un schéma en groupes, on peut, au moyen de l'inverse,

transformer canoniquement tout module à droite en un module à gauche.]

Exemple. La représentation triviale p 1 de G dans un module E
correspond à la structure de comodule x h* 1 0 x sur E. Pour E K on
obtient le comodule unité.

Opérations sur les comodules

a) Produit tensoriel.

Si Ex et E2 sont des C-modules (à gauche, par exemple), on a défini
au n° 1.2 une structure de C ® C-comodule sur EX®E2. Comme

m : C ® C -> C est un morphisme de cogèbres, on déduit de là une structure
de C-comodule sur Ex ® E2. Du fait que m est commutative, cette structure
ne dépend pas de l'ordre dans lequel on écrit E\ et E2. Elle correspond
(via la prop. 1) à l'opération évidente de produit tensoriel de G-modules (la
vérification de ce fait est immédiate).

b) Contragrédiente.

Supposons que C admette une inversion, et soit E un C-comodule à gauche
qui est projectif de type fini comme module. En utilisant les isomorphismes

Hom(£, C (g) E) - Hom(E (x) E' 9 C) - Hom(£", C (x) E')

on définit sur E' une structure de C-module à droite. En utilisant l'inversion

i, on transforme cette structure en une structure de C-comodule à gauche,
dite contragrédiente de celle donnée sur E et notée Ë. Elle correspond (via la
prop. 1) à l'opération évidente de «contragrédiente d'une représentation».
[L'hypothèse faite sur E sert à assurer que le foncteur «dual» commute au
foncteur «extension des scalaires».]
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