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GÈBRES 51

d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe E e M avec

N Me- L'ensemble X est ordonné filtrant puisque ME{xe2 contient MEï et

MEl. Si N e X, soit comme ci-dessus (PNixN) un couple représentant la

restriction à TV du foncteur v, et soit AN End(PAr). Si Ni D N2, il existe un

unique morphisme Pn2 transformant xEfl en Xm2\ °n v°it aisément que

ce morphisme identifie PNl au plus grand quotient de PNl appartenant ä N2.

En particulier, tout endomorphisme de PN{ définit par passage au quotient

un endomorphisme de PNl. D'où un homomorphisme ANl->AN2 qui est

surjectif. Si A désigne l'algèbre profinie limite projective des AN, pour
N e X, il est alors clair que la cogèbre duale de A répond à la question.

Quant à Vunicité de cette cogèbre (ou de l'algèbre A), elle provient de la

remarque suivante: A est isomorphe à l'algèbre des endomorphismes du

foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas

M Me, en utilisant le théorème de Grothendieck disant qu'un foncteur
exact à droite est proreprésentable: on appliquerait ce théorème à u, d'où
P e Pro M représentant u et on obtiendrait A comme l'algèbre des

endomorphismes de P.

§3. Bigèbres

3.1. Définitions et conventions

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un AT-module C muni
d'une structure de cogèbre d:C C ® C et d'une structure d'algèbre
m : C (x) C -> C, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit C (x) C de la structure d'algèbre produit tensoriel de celle
de C par elle-même, d est un homomorphisme d'algèbres de C dans C (x) C.

Cet axiome équivaut d'ailleurs à:

(i') L'application m : C (x) C - C est un morphisme de cogèbres (pour la
structure naturelle de cogèbre de C (x) C).

Dans tout ce qui suit, nous réserverons le terme de bigèbres à celles vérifiant
les conditions suivantes:

(ii) La cogèbre (C, d) possède une co-unité e :C -> K.

(iii) L'algèbre (C, m) est commutative, associative, et possède un élément
unité 1.



52 J.-P. SERRE

(iv) La co-unité e: C -> K est un morphisme d'algèbres et e(Y) 1.

(v) On a d{1) 1 (x) 1.

La condition (iii) permet de considérer C comme Yalgèbre affine d'un schéma

affine G sur K; on a G Spec (C). Pour tout Kx e Alg^, on note G(KX)
l'ensemble des points de G à valeurs dans Kx, autrement dit l'ensemble des

morphismes (au sens de Alg*) de C dans Kx. La condition (iv) signifie
que e est un élément de G(K). Grâce aux conditions (i) et (v), la structure de

cogèbre de C peut être interprétée comme un morphisme de G x G dans G,

qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoïdes sur K; pour tout Kx e AlgKi G(KX) a une structure naturelle de

monoïde, d'élément neutre l'image de e dans G(KX), image que l'on se

permet de noter encore e.

On appelle inversion sur G, toute application i: C -> C ayant les propriétés
suivantes :

a) i est un morphisme d'algèbres, et /(1) 1.

b) m o (lç- (x) /) o d est égal à l'endomorphisme c e(c). 1 de G.

La condition a) permet d'interpréter i comme un morphisme I: G G et la
condition b) signifie que x.I{x) e pour tout x e G(KX), et tout Kx. On voit
ainsi que, si i existe, il est unique, et que c'est un isomorphisme de C sur la

bigèbre opposée C°. L'existence de i revient à dire que G est un schéma

en groupes.

Remarque. L'application identique C -> C est un point de G (G), appelé

point canonique; nous le noterons y. De même, on peut interpréter une
inversion i de C comme un point i de G (G) et la condition b) signifie que

y\ e.

3.2. Correspondance entre comodules et G-modules

Soit E un module. Si Kx e Alg*, nous noterons End^^) le monoïde des

endomorphismes du ^-module Kx (x) E, et AutE(KX) le groupe des éléments

inversibles de End^^i). Si Kx K2 est un morphisme, on définit de manière

évidente le morphisme correspondant de End^i^) dans End^iG)- Ainsi
End^ est un foncteur de Alg^ dans la catégorie Mon des monoïdes ; de même

AutE est un foncteur de Alg^ dans la catégorie Gr des groupes.
Soient maintenant C et G Spec (C) comme ci-dessus. On a vu que G

définit un foncteur (noté également G) de Alg^ dans Mon; ce foncteur est à

valeurs dans Gr si G est un schéma en groupes.

Définition 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur End^.
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