Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: GÈBRES

Autor: Serre, Jean-Pierre

Kapitel: 3.1. DÉFINITIONS ET CONVENTIONS

DOI: https://doi.org/10.5169/seals-60413

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe $E \in M$ avec $N = M_E$. L'ensemble X est ordonné filtrant puisque $M_{E_1 \times E_2}$ contient M_{E_1} et M_{E_2} . Si $N \in X$, soit comme ci-dessus (P_N, x_N) un couple représentant la restriction à N du foncteur v, et soit $A_N = \operatorname{End}(P_N)$. Si $N_1 \supset N_2$, il existe un unique morphisme $P_{N_1} \to P_{N_2}$ transformant x_{N_1} en x_{N_2} ; on voit aisément que ce morphisme identifie P_{N_2} au plus grand quotient de P_{N_1} appartenant à N_2 . En particulier, tout endomorphisme de P_{N_1} définit par passage au quotient un endomorphisme de P_{N_2} . D'où un homomorphisme $A_{N_1} \to A_{N_2}$ qui est surjectif. Si A désigne l'algèbre profinie limite projective des A_N , pour $N \in X$, il est alors clair que la cogèbre duale de A répond à la question.

Quant à l'unicité de cette cogèbre (ou de l'algèbre A), elle provient de la remarque suivante: A est isomorphe à l'algèbre des endomorphismes du foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas $M=M_E$, en utilisant le théorème de Grothendieck disant qu'un foncteur exact à droite est proreprésentable: on appliquerait ce théorème à v, d'où $P \in \operatorname{Pro} M$ représentant v et on obtiendrait A comme l'algèbre des endomorphismes de P.

§3. BIGÈBRES

3.1. DÉFINITIONS ET CONVENTIONS

(Dans ce n° , ainsi que dans le suivant, on ne suppose pas que K soit un corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un K-module C muni d'une structure de cogèbre $d: C \to C \otimes C$ et d'une structure d'algèbre $m: C \otimes C \to C$, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit $C \otimes C$ de la structure d'algèbre produit tensoriel de celle de C par elle-même, d est un homomorphisme d'algèbres de C dans $C \otimes C$.

Cet axiome équivaut d'ailleurs à:

(i') L'application $m: C \otimes C \to C$ est un morphisme de cogèbres (pour la structure naturelle de cogèbre de $C \otimes C$).

Dans tout ce qui suit, nous réserverons le terme de *bigèbres* à celles vérifiant les conditions suivantes:

- (ii) La cogèbre (C, d) possède une co-unité $e: C \to K$.
- (iii) L'algèbre (C, m) est commutative, associative, et possède un élément unité 1.

- (iv) La co-unité $e: C \to K$ est un morphisme d'algèbres et e(1) = 1.
- (v) On a $d(1) = 1 \otimes 1$.

La condition (iii) permet de considérer C comme l'algèbre affine d'un schéma affine G sur K; on a $G = \operatorname{Spec}(C)$. Pour tout $K_1 \in \operatorname{Alg}_K$, on note $G(K_1)$ l'ensemble des points de G à valeurs dans K_1 , autrement dit l'ensemble des morphismes (au sens de Alg_K) de C dans K_1 . La condition (iv) signifie que e est un élément de G(K). Grâce aux conditions (i) et (v), la structure de cogèbre de C peut être interprétée comme un morphisme de $G \times G$ dans G, qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine en monoïdes sur K; pour tout $K_1 \in \operatorname{Alg}_K$, $G(K_1)$ a une structure naturelle de monoïde, d'élément neutre l'image de e dans $G(K_1)$, image que l'on se permet de noter encore e.

On appelle *inversion* sur C, toute application $i: C \to C$ ayant les propriétés suivantes:

- a) i est un morphisme d'algèbres, et i(1) = 1.
- b) $m \circ (1_C \otimes i) \circ d$ est égal à l'endomorphisme $c \mapsto e(c)$. 1 de C. La condition a) permet d'interpréter i comme un morphisme $I: G \to G$ et la condition b) signifie que $x \cdot I(x) = e$ pour tout $x \in G(K_1)$, et tout K_1 . On voit ainsi que, si i existe, il est unique, et que c'est un isomorphisme de C sur la bigèbre opposée C^o . L'existence de i revient à dire que G est un schéma en groupes.

Remarque. L'application identique $C \to C$ est un point de G(C), appelé point canonique; nous le noterons γ . De même, on peut interpréter une inversion i de C comme un point ι de G(C) et la condition b) signifie que $\gamma \iota = e$.

3.2. Correspondance entre comodules et G-modules

Soit E un module. Si $K_1 \in \operatorname{Alg}_K$, nous noterons $\operatorname{End}_E(K_1)$ le monoïde des endomorphismes du K_1 -module $K_1 \otimes E$, et $\operatorname{Aut}_E(K_1)$ le groupe des éléments inversibles de $\operatorname{End}_E(K_1)$. Si $K_1 \to K_2$ est un morphisme, on définit de manière évidente le morphisme correspondant de $\operatorname{End}_E(K_1)$ dans $\operatorname{End}_E(K_2)$. Ainsi End_E est un foncteur de Alg_K dans la catégorie Mon des monoïdes; de même Aut_E est un foncteur de Alg_K dans la catégorie Gr des groupes.

Soient maintenant C et $G = \operatorname{Spec}(C)$ comme ci-dessus. On a vu que G définit un foncteur (noté également G) de Alg_K dans Mon; ce foncteur est à valeurs dans Gr si G est un schéma en groupes.

DÉFINITION 1. On appelle représentation linéaire de G dans E tout morphisme ρ du foncteur G dans le foncteur End_E .