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GEBRES 51

d) Cas général.

Soit X ’ensemble des sous-catégories N de M telles qu’il existe E € M avec
N = My. L’ensemble X est ordonné filtrant puisque Mg, « g, contient Mg, et
Mg,. Si N € X, soit comme ci-dessus (Py, xy) un couple représentant la
restriction 4 N du foncteur v, et soit Ay = End(Py). Si Ny D N,, il existe un
unique morphisme Py, = Py, transformant xy, en xy,; on voit aisément que
ce morphisme identifie Py, au plus grand quotient de Py, appartenant a N,.
En particulier, tout endomorphisme de Py, définit par passage au quotient
un endomorphisme de Py,. D’oi un homomorphisme Ay, = Ay, qui est
surjectif. Si A désigne I’algébre profinie limite projective des Ay, pour
N € X, il est alors clair que la cogébre duale de A répond a la question.

Quant a Punicité de cette cogébre (ou de 1’algébre A), elle provient de la
remarque suivante: A est isomorphe a [’algébre des endomorphismes du
foncteur v, munie de la topologie de la convergence simple.

Remarque. 1l est probablement possible d’éviter le passage par le cas
M = Mg, en utilisant le théoréme de Grothendieck disant qu’un foncteur
exact a droite est proreprésentable: on appliquerait ce théoreme a v, d’ou
P € Pro M représentant v et on obtiendrait 4 comme 1’algébre des endo-
morphismes de P.

§3. BIGEBRES

3.1. DEFINITIONS ET CONVENTIONS

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu’une bigébre sur K est un K-module C muni
d’une structure de cogebre d:C—> C&® C et d’une structure d’algébre
m:C & C— C, ces structures vérifiant I’axiome suivant:

(i) Sil’on munit C ® C de la structure d’algébre produit tensoriel de celle
de C par elle-m€me, d est un homomorphisme d’algébres de C dans C R C.

Cet axiome équivaut d’ailleurs a:

(i") L’application m: C @ C — C est un morphisme de cogébres (pour la
structure naturelle de cogebre de C Q C).

Dans tout ce qui suit, nous réserverons le terme de bigébres a celles vérifiant
les conditions suivantes:

(i) La cogebre (C, d) posséde une co-unité e: C — K.

(i) L’algebre (C, m) est commutative, associative, et posséde un élément
unité 1.
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(iv) La co-unité e: C — K est un morphisme d’algébres et e(1) = 1.
(v) Onad(l)=1Q 1.

La condition (iii) permet de considérer C comme 1’algébre affine d’un schéma
affine G sur K; on a G = Spec(C). Pour tout K; € Algg, on note G(K;)
I’ensemble des points de G a valeurs dans K;, autrement dit I’ensemble des
morphismes (au sens de Algg) de C dans K,;. La condition (iv) signifie
que e est un élément de G(K). Grace aux conditions (i) et (v), la structure de
cogebre de C peut €tre interprétée comme un morphisme de G X G dans G,
qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoides sur K; pour tout K; € Algg, G(K;) a une structure naturelle de
monoide, d’élément neutre I’image de e dans G(K,), image que 1’on se
permet de noter encore e.

On appelle inversion sur C, toute application i: C — C ayant les propriétés
suivantes:

a) I est un morphisme d’algeébres, et i(1) = 1.

b) mo(lc®i)cd est égal a ’endomorphisme c—e(c).1 de C.
La condition a) permet d’interpréter i comme un morphisme /: G — G et la
condition b) signifie que x.I(x) = e pour tout x € G(K;), et tout K;. On voit
ainsi que, si 7 existe, il est unique, et que c’est un isomorphisme de C sur la

bigebre opposée C°. L’existence de i revient a dire que G est un schéma
en groupes.

Remarque. L1’application identique C — C est un point de G(C), appelé
point canonique; nous le noterons y. De méme, on peut interpréter une
inversion i de C comme un point 1 de G(C) et la condition b) signifie que
Y1 = e.

3.2. CORRESPONDANCE ENTRE COMODULES ET G-MODULES

Soit £ un module. Si K, € Algg, nous noterons Endz(K;) le monoide des
endomorphismes du K;-module K|, & E, et Autz(K;) le groupe des éléments
inversibles de Endz(K;). Si K; = K, est un morphisme, on définit de maniére
é¢vidente le morphisme correspondant de Endz(K;) dans Endg(K,). Ainsi
Endg est un foncteur de Algx dans la catégorie Mon des monoides; de méme
Autz est un foncteur de Algyx dans la catégorie Gr des groupes.

Soient maintenant C et G = Spec(C) comme ci-dessus. On a vu que G
définit un foncteur (noté également G) de Algx dans Mon; ce foncteur est a
valeurs dans Gr si G est un schéma en groupes.

DEFINITION 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur Endg.
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