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d) Cas général.

Soit X ’ensemble des sous-catégories N de M telles qu’il existe E € M avec
N = My. L’ensemble X est ordonné filtrant puisque Mg, « g, contient Mg, et
Mg,. Si N € X, soit comme ci-dessus (Py, xy) un couple représentant la
restriction 4 N du foncteur v, et soit Ay = End(Py). Si Ny D N,, il existe un
unique morphisme Py, = Py, transformant xy, en xy,; on voit aisément que
ce morphisme identifie Py, au plus grand quotient de Py, appartenant a N,.
En particulier, tout endomorphisme de Py, définit par passage au quotient
un endomorphisme de Py,. D’oi un homomorphisme Ay, = Ay, qui est
surjectif. Si A désigne I’algébre profinie limite projective des Ay, pour
N € X, il est alors clair que la cogébre duale de A répond a la question.

Quant a Punicité de cette cogébre (ou de 1’algébre A), elle provient de la
remarque suivante: A est isomorphe a [’algébre des endomorphismes du
foncteur v, munie de la topologie de la convergence simple.

Remarque. 1l est probablement possible d’éviter le passage par le cas
M = Mg, en utilisant le théoréme de Grothendieck disant qu’un foncteur
exact a droite est proreprésentable: on appliquerait ce théoreme a v, d’ou
P € Pro M représentant v et on obtiendrait 4 comme 1’algébre des endo-
morphismes de P.

§3. BIGEBRES

3.1. DEFINITIONS ET CONVENTIONS

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu’une bigébre sur K est un K-module C muni
d’une structure de cogebre d:C—> C&® C et d’une structure d’algébre
m:C & C— C, ces structures vérifiant I’axiome suivant:

(i) Sil’on munit C ® C de la structure d’algébre produit tensoriel de celle
de C par elle-m€me, d est un homomorphisme d’algébres de C dans C R C.

Cet axiome équivaut d’ailleurs a:

(i") L’application m: C @ C — C est un morphisme de cogébres (pour la
structure naturelle de cogebre de C Q C).

Dans tout ce qui suit, nous réserverons le terme de bigébres a celles vérifiant
les conditions suivantes:

(i) La cogebre (C, d) posséde une co-unité e: C — K.

(i) L’algebre (C, m) est commutative, associative, et posséde un élément
unité 1.
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(iv) La co-unité e: C — K est un morphisme d’algébres et e(1) = 1.
(v) Onad(l)=1Q 1.

La condition (iii) permet de considérer C comme 1’algébre affine d’un schéma
affine G sur K; on a G = Spec(C). Pour tout K; € Algg, on note G(K;)
I’ensemble des points de G a valeurs dans K;, autrement dit I’ensemble des
morphismes (au sens de Algg) de C dans K,;. La condition (iv) signifie
que e est un élément de G(K). Grace aux conditions (i) et (v), la structure de
cogebre de C peut €tre interprétée comme un morphisme de G X G dans G,
qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoides sur K; pour tout K; € Algg, G(K;) a une structure naturelle de
monoide, d’élément neutre I’image de e dans G(K,), image que 1’on se
permet de noter encore e.

On appelle inversion sur C, toute application i: C — C ayant les propriétés
suivantes:

a) I est un morphisme d’algeébres, et i(1) = 1.

b) mo(lc®i)cd est égal a ’endomorphisme c—e(c).1 de C.
La condition a) permet d’interpréter i comme un morphisme /: G — G et la
condition b) signifie que x.I(x) = e pour tout x € G(K;), et tout K;. On voit
ainsi que, si 7 existe, il est unique, et que c’est un isomorphisme de C sur la

bigebre opposée C°. L’existence de i revient a dire que G est un schéma
en groupes.

Remarque. L1’application identique C — C est un point de G(C), appelé
point canonique; nous le noterons y. De méme, on peut interpréter une
inversion i de C comme un point 1 de G(C) et la condition b) signifie que
Y1 = e.

3.2. CORRESPONDANCE ENTRE COMODULES ET G-MODULES

Soit £ un module. Si K, € Algg, nous noterons Endz(K;) le monoide des
endomorphismes du K;-module K|, & E, et Autz(K;) le groupe des éléments
inversibles de Endz(K;). Si K; = K, est un morphisme, on définit de maniére
é¢vidente le morphisme correspondant de Endz(K;) dans Endg(K,). Ainsi
Endg est un foncteur de Algx dans la catégorie Mon des monoides; de méme
Autz est un foncteur de Algyx dans la catégorie Gr des groupes.

Soient maintenant C et G = Spec(C) comme ci-dessus. On a vu que G
définit un foncteur (noté également G) de Algx dans Mon; ce foncteur est a
valeurs dans Gr si G est un schéma en groupes.

DEFINITION 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur Endg.
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En d’autres tefmes, p consiste en la donnée, pour tout K; € Algg, d’un
morphisme de monoides p(K;): G(K;) > Endg(K;) et, si K; = K; est un
morphisme dans Algg, le diagramme

GKK,) — GK)
p(kKy) L p(Ky)
Endg(K;) — Endg(K3)

doit étre commutatif.

Terminologie. Une représentation linéaire du monoide G° opposé a G
est appelée une antireprésentation de G. Un module £, muni d’une repre-
sentation (resp. antireprésentation) G — Endy est appelé un G-module a
gauche (resp. a droite).

Remarque. Si G est un schéma en groupes, et si p: G = Endz est une
représentation linéaire de G dans E, il est clair que p prend ses valeurs dans
le sous-foncteur Auty de Endg.

Notons maintenant G le foncteur G, considéré comme foncteur a
valeurs dans Ens (i.e. le composé Algx 4 Mon — Ens); définissons de méme
End}”. Soit p un morphisme de G¢* dans End}". L’image par p(C) du
point canonique Yy € G(C) est un C-endomorphisme de C Q E, donc est
définie par une application K-linéaire d(p): E—~> C R E.

PROPOSITION 1. (a) L’application pt— d(p) est une bijection
de [l’ensemble des morphismes de G dans Endy® sur ensemble
Hom(E, C Q E).

(b) Pour que p:G — End7" soit une représentation linéaire (resp.
une antireprésentation linéaire) de G dans E, il faut et il suffit que d(p)
munisse E d’une structure de C-comodule a droite (resp. & gauche).

C’est 1a un résultat bien connu (cf. SGAD, exposé I). Rappelons la
démonstration:

L’assertion (a) provient de ce que G°"s est représentable par le couple
(C, v). En particulier, si x € G(X;), I"image de x par p(K;) est I’application
K;-lin¢aire de K; ® E dans K; ® E qui prolonge I’application linéaire
(x® 1) o d(p) de E dans K, R E.

Pour (b), on peut se borner au cas des antireprésentations. Il faut d’abord
exprimer que p(K;) transforme e en 1 pour tout K, et il suffit de le faire
pour K; = K. Cela donne la condition

(e ®1z) 0 d(p) = 15
qui est ’axiome (2) des comodules.
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Il faut ensuite exprimer que le diagramme

Gens x Gens "5 Bpd™ x End o™
a | LB
Gens 5 End ™

(ou a désigne la loi de composition de G et B 'opposée de la loi de
composition de Endg) est commutatif. Notons vy; (resp. 7Y,) I’homo-
morphisme de C dans C @ C qui applique x € C dans x ® 1 (resp. 1 ® x);
onavyp, Y, € G(CQ® C). De plus, il est immédiat que le foncteur G X GePs
est représentable par (C & C, v; X v3). Il suffit donc d’exprimer que les deux
images de vy, X vy, dans Endz(C &® C) coincident. Or I’image de y; X 7y, dans
G(C®C) est le point donné par d:C— C® C; son image dans
Endz(C ® C), identifié a Hom(E, C ® C ® E) est donc (d ® 1g) o d(p). 1l
faut ensuite calculer I"image de y, X v, par G X G 5P Endy X Endg % End E-
On trouve, aprés un calcul sans difficultés [cf. ci-apres] 1’élément
(1 ® d(p)) © d(p). La commutativité du diagramme considéré équivaut
donc a I’axiome (1) des comodules, ce qui achéve de démontrer la proposition.

[Voici le «calcul sans difficultés» en question. Il s’agit de déterminer
I’image ¢ € Endz(C ® C) de v, X v, par B o (p X p). Si ¢, (resp. ¢,) est
I’image de vy, (resp. v,) par p, on a ¢ = @, © ¢ (puisque B est ’opposée de
la loi de composition). De plus, ¢; est caractérisé par le fait de prolonger
I’application K-linéaire (v, @ 1) od(p):E-CRQE->C®R CQ® E. Soit
alors x € E, et posons:

dp))=Ya®xi, dp)x)=Yc ®x;.

On a:
¢ =MnOI)(Ec®x) = La®1Qx.
De méme:
02(x) = Y1 ® ¢ ® x5 .
D’ol:

0 = 02(01 (@) = LT 02(c; ® 1 @ x7)
' = Z (C,' ® 1) . E 1 ® Cij ® Xij (([)2 étant C ® C—linéaire)
= Zci®cij®xij~
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D’autre part, on a
((1c® d(p) © d(P)) () = (Ic ® d(p)) (X ¢ ® xi)
=Ya®c ®xy.
En comparant, on voit bien que ’on a

0=0c®d(P)cdp .]

Remarque. La proposition précédente permet donc d’identifier les
G-modules ¢ gauche aux C-comodules a droite, et inversement. [Il est bien
triste d’avoir ainsi & échanger sa droite et sa gauche, mais on n’y peut rien.
Toutefois, lorsque G est un schéma en groupes, on peut, au moyen de l’inverse,
transformer canoniquement tout module & droite en un module a gauche.]

Exemple. La représentation triviale p =1 de G dans un module E
correspond a la structure de comodule x— 1 @ x sur E. Pour £ = K on
obtient le comodule unizé.

OPERATIONS SUR LES COMODULES

a) Produit tensoriel.

Si E, et E, sont des C-modules (a gauche, par exemple), on a défini
au n° 1.2 une structure de C & C-comodule sur E; ® E,. Comme
m:C ® C— C est un morphisme de cogebres, on déduit de 1a une structure
de C-comodule sur E; ® E,. Du fait que m est commutative, cette structure
ne dépend pas de D’ordre dans lequel on écrit E; et E,. Elle correspond
(via la prop. 1) a Popération évidente de produit tensoriel de G-modules (la
vérification de ce fait est immédiate).

b) Contragrédiente.

Supposons que C admette une inversion, et soit £ un C-comodule & gauche
qui est projectif de type fini comme module. En utilisant les isomorphismes

Hom(E, C® E) = Hom(E ® E’, C) = Hom(E’,C ® E’)

on définit sur £’ une structure de C-module a droite. En utilisant I’inver-
sion 7, on transforme cette structure en une structure de C-comodule & gauche,
dite contragrédiente de celle donnée sur E et notée E. Elle correspond (via la
prop. 1) a ’opération évidente de «contragrédiente d’une représentation.

[L’hypothése faite sur E sert a assurer que le foncteur «dual» commute au
foncteur «extension des scalaires».]
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3.3. SOUS-BIGEBRES

(On suppose a nouveau que K est un corps.)
Soit C une bigebre (vérifiant les conditions du n° 3.1), et soit L une sous-
catégorie abélienne de Com’é vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d’une sous-cogébre D de C.

PROPOSITION 2. Pour que D soit une sous-bigébre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le
comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par ® et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogébres Cg attachées
aux comodules £ € L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

LEMME 1. Si E et F sont des comodules de rang fini, on a
(*) CE@F:CE-CF-

En effet, on vérifie tout de suite que Cr ® Cr est la sous-cogébre de C ® C
attachée au C ® C-comodule E ® F. Comme Cggr est I'image de cette
derniere par m: C ® C — C, c’est bien Cg.Cr.

Le fait que D contienne 1 provient de ce que Cr = K.1 si £ = K.

PROPOSITION 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
«contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Ce=i(Cg) .

COROLLAIRE. Supposons que G = Spec(C) soit un schéma en
groupes. Soit Mod{; la catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Modé. Pour qu’il existe un quotient H
de G tel que L = Mod%, il faut et il suffit que L vérifie les condi-
tions 1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations
«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n’est qu’une reformulation des props. 2 et 3, étant entendu que
«groupe quotient» est pris pour synonyme de «sous-bigebre contenant 1».
L’unicité de H provient du th. 2 du n° 2.4.
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[I1 y a un résultat plus général, di sauf erreur a Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme
ici, une sous-cogébre d’une bigébre, on se donne seulement une cogébre D et
une opération de «produit tensoriel» sur la catégorie M = Com?, corres-
pondante (la donnée de D est d’ailleurs équivalente a celle du couple formeé
de M et du foncteur v: M — Vectg, cf. n® 2.5, th. 3). En imposant
a ce produit tensoriel des conditions raisonnables (en particulier
V(E Q F) =v(E) ® v(F)) on démontre alors qu’il provient d’une structure de
bigébre bien déterminée sur D; cette bigébre a un élément unité si M contient
un €élément unité pour le produit tensoriel; elle a une inversion, si I’on se donne
une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur « Hom».)

Grothendieck a rencontré cette situation avec K = Q, M = catégorie des
motifs sur un corps de base k et v = foncteur «cohomologie a valeurs
dans Q» relativement a un plongement de k£ dans C.]

3.4. UNE INTERPRETATION DES POINTS DE G

Soit K; € Algg et soit g € G(K;) un point de G a valeurs dans K;. Pour
tout E € Com{;, notons g(E) I’image de g par I’antireprésentation

P(E): G(K1) = Endg(K;) .
On a donc g(F) € Endg(K;) = Endg (K; ® E), et de plus:
(1) gK) = I,

(i) g(E ® Ey) = g(E1) ® g(Ey).
Réciproquement:

PROPOSITION 4. Soit Vg, Com{:—+ Modk, le foncteur qui associe a
tout E e Comy le Ki-module K, ® E. Soit ¢:vx,— vy, un endo-
morphisme de vk, vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(K,) tel que ¢ = g.

D’aprés 3.2, I’application G(K;) — End (v k,) €st un antihomomorphisme
de monoides. La prop. 4 donne donc:

COROLLAIRE. Le monoide G(K,) est isomorphe a I’opposé du
monoide des endomorphismes de Vg, Vvérifiant (i) et (ii).

[C’est 1a un résultat analogue au théoréme de dualité de Tannaka; on
reviendra la-dessus plus loin.]
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Remarques

1) Dans I’énoncé de la prop. 4, on peut remplacer Com’é par Comc;
cela revient au méme, du fait que tout objet de Com, est limite inductive
d’objets de Com”., cf. §1.

2) Lorsque G est un schéma en groupes, les g(E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(i) g(&) = g(E)".
Démonstration de la proposition 4.

Tout d’abord, soit ¥ € Hom(C, K;). Pour tout £ € Com¢, soit ¢,(E)
I’endomorphisme de K; ® E qui prolonge I’application linéaire

EXcES KQE.

On obtient ainsi un endomorphisme ¢, de v, .

LEMME 1. L’application u— ¢, estun isomorphisme de Hom(C, K;)
sur le groupe des endomorphismes du foncteur vg,.

[En fait, c’est un isomorphisme de K;-algébres, a condition de mettre sur
Hom (C, K,) la structure d’algébre opposée de celle a laquelle on pense.]

Si @ € End(vk,), formons le composé
C—K & C—K, X C — K,
(la premiére application étant x — 1 ® x, la seconde ¢(C) et la troisieéme
1 ® ¢). On obtient une application linéaire
u(p): C - K, .

Il suffit de prouver que les applications u— @, et @ = u(p) sont inverses
I’une de 'autre.
Tout d’abord, si u € Hom(C, K,), u(p,) est le composé

d u®1 I1®e
Co-CRC - K ®C — K,
ou encore
d 1Qe u
C-CRC - C—K,

c’est-a-dire u.

Soit maintenant ¢ € End(vg,). Si E est un comodule, et ¥ un K-espace
vectoriel, on a O(EQ® V) = ¢(E) ® 1y. (Se ramener au cas ou V est de
dimension finie, puis choisir une base de V et utiliser le fait que ¢ est un
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morphisme de foncteurs.) En particulier, on a P(CRE)=0¢(C)® lg si
E € Comc. Comme dg: E— C® E est un morphisme de comodules, on a un
diagramme commutatif:

12

E - KQE Ki®QCQRE

oE) | eC)® 11
K®E = KQ®COE

E

105 KQE.
Mais le composé (1 ®e® 1) o (1 ® dg) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
®(E)

E-K ®FE — K QE

est égal a 9,(E), avec u = u(@), d’ou le lemme.

[Ce lemme n’a rien a voir avec les bigeébres. On aurait pu le remonter
au §2 et le déduire de I’isomorphisme Com¢ = Com7”, du n° 2.2.]

LEMME 2. (a) Pour que ¢, vérifie la relation (i), il faut et il suffit
que u(l) =1.

(b) Pour que ¢, vérifie la relation (ii), il faut et il suffit que u soit
un homomorphisme d’algébres. |

Si ’on prend pour E le module unité K, on a K; ® E = K; et ¢,(E) est
la multiplication par u(1) dans K;; d’ou (a).

Pour (b), on remarque d’abord que (ii) est vérifiée si et seulement si elle
I’est pour E; = E, = C, i.e. si

(i) 0u(C® C) = 0u(C) @ 9u(C).

Cela résulte simplement de ce que tout comodule est isomorphe a un sous-
comodule d’une somme directe de comodules tous isomorphes a C.

Reste a exprimer la condition (ii’). Soit (x;);<; une base de C, soient
a,b e C, et écrivons d(a) et d(b) sous la forme

da)=Ya®x, aeC
d(b)=Ebj®xj, bJ'EC.
On a alors:

0.(C)(@) = Yu(a)®x;, avec u(a) €Kk
et

0.(C)(D) = Yub)®x;, avec u(b;)ek,.
D’ou:

*) (0(C) ® 0.(C) (@ ® b) = Y, u(@)ud;)  x; ® x; .

ij
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Soit d’autre part d’': C ® C—> C ® C ® C le coproduit du comodule C ® C.
On vérifie sans difficulté que 'on a
d@®b) =) ab;®x®x;,
iJ
d’ou
(**) 0 (CRC)a®Db)= ) ul@b) ®xQx; .
iJ
En comparant (*) et (**), on voit que ¢,(C ® C) = ¢,(C) ® ¢,(C) si u est
un homomorphisme d’algebres. Pour prouver la réciproque, choisissons pour
(x;); <7 une base telle que x, = 1 pour un élément 0 € I et e(x;) = 0 pour
i#0. On a alors q,=a et b, = b, et 1’égalité de (*) et (**) entraine
u(a)u(b) = u(ab), ce qui acheve la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.
En effet, un ¢lément de G(K,) est par définition un homomorphisme
d’algébres u: C — K, tel que u(l) = 1. La seule chose a vérifier, c’est que,
pour tout comodule E, I’endomorphisme u(E) de K, ® E défini par u est
égal a @,(E): or c’est justement la définition de u(E), cf. démonstration de
la prop. 1.

Exemple. Prenons pour K, l’algebre des nombres duaux sur K. La
prop. 4 fournit alors un anti-isomorphisme de /’algebre de Lie de G sur la sous-
algébre de Lie de End(v) formée des endomorphismes 6 de v tels que

0(K)=0 et BE®E)=0E)® L+ 1z ® 0(E) .

3.5. INTERPRETATION DE (G COMME LIMITE PROJECTIVE DE GROUPES
ALGEBRIQUES LINEAIRES

DEFINITION 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algébre sur K.

PROPOSITION 5. Soit C une bigébre (resp. une bigébre possédant une
inversion ). Alors C est limite inductive filtrante de ses sous-bigébres de type
fini contenant 1 (resp. et stables par i).

L’énoncé contenant les «resp.» équivaut a:

COROLLAIRE. Le schéma en groupes G associé a C est limite
projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit £ un C-comodule (4 droite, pour
changer un peu) de rang fini et soit Cg la sous-cogebre de C correspondante.
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- n
Pour tout n > 0, soit Cg(n) la sous-cogebre attachnée au comodule & E;

pour n = 0, on convient comme d’ordinaire que ® E = K, de sorte que
Cr(0) = K.1. On sait (cf. lemme 1) que

Cr(n) = Cg...Cr  (n facteurs) .

Il en résulte que

CE)= Y Cu(n)
n=20

est la sous-algébre de C engendrée par Cg et 1. D’ou:

PROPOSITION 6. L’algébre C(E) est une sous-bigébre de C conte-
nant 1 et de type fini; c’est la plus petite sous-bigébre de C contenant 1
et Cg.

Comme C est visiblement limite inductive des C(F), cela démontre la
premiere partie de la prop. 5. D’autre part, lorsque C possede une
inversion i, la seconde partie de la prop. 5 résulte de la proposition plus précise
(mais évidente) suivante:

PROPOSITION 7. L’algebre C(E @ l\f) est une sous-bigebre de C
contenant 1 et stable par i; c’est la plus petite sous-bigebre de C ayant
ces propriétés; elle est de type fini.

Si ’on note Xg (resp. Gg) le monoide (resp. groupe) algébrique linéaire
associé¢ a C(E) (resp. a C(E @ E)), on voit que ’on a

G = ligl.XE (resp. G = Ign.GE) .

Remarques

. vV \ . . .
1) La construction de C(E @ E) a partir de C(E) peut aussi se faire de
la maniere suivante: au G-module E est associé un élément «déterminant»
dg, qui est un élément inversible de C, contenu dans C(E). On a:

v 1
C(E® E) = C(E) [—] .
Og

2) L’interprétation de X et Gg en termes de schémas est la suivante:
Xg (resp. Gg) est le plus petit sous-schéma fermé du schéma Endg (resp.
GLr) des endomorphismes (resp. automorphismes) de E contenant I’image de
la représentation p: G — Endy attachée & E. Cela se vérifie immédiatement
sur la construction de I’algébre affine de Endy (resp. Gg), construction que
le rédacteur trouve inutile de reproduire.
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DEFINITION 3. Soit C une bigebre possédant une inversion. Un
C-comodule E de rang fini est dit fidéle si C(E® E) = C

Vu ce qui précede, E est fidéle si et seulement si G = Gg est un isomor-
phisme.

PROPOSITION 8. Si E est fideéle, toute représentation linéaire de G est
quotzent d’une sous-représentation d’une somme directe de représentations

®(E @ E).

Cela résulte du lemme 1 du n° 2.4.

COROLLAIRE. Tout G-module simple est quotient de Jordan-Hélder
dun ® (E@ E).
Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-

sorielles de E @ E par les représentations ® E ® det(E) -, avec des
notations évidentes.

2) Il se peut que Gy soit fermé dans Endg (et non pas seulement dans
GLz), autrement dit que C(£) = C(E @ 133/) C’est le cas, par exemple, si Gg
est contenu dans SLz. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E @l\:} par celles de E.

§4. ENVELOPPES

4.1. COMPLETION D’UNE ALGEBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algebre associative a ¢€lément unité. Soit S, (resp. S, S)
I’ensemble des idéaux a droite (resp. a gauche, resp. bilatéres) de codimension
finie dans A. On a S; N S; = S et S est cofinal & la fois dans S, et dans S,;
en effet, si a € S, par exemple, I’annulateur du 4-module A/a appartient a S
et est contenu dans a.

On posera:

A =1lim.A/a
«

la limite projective étant prise sur I’ensemble ordonné filtrant S. L’algebre A
est [’algébre profinie complétée de A, pour la topologie définie par S (ou S,,
ou S,, cela revient au méme). Il y a un isomorphisme évident de la catégorie
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