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d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe E e M avec

N Me- L'ensemble X est ordonné filtrant puisque ME{xe2 contient MEï et

MEl. Si N e X, soit comme ci-dessus (PNixN) un couple représentant la

restriction à TV du foncteur v, et soit AN End(PAr). Si Ni D N2, il existe un

unique morphisme Pn2 transformant xEfl en Xm2\ °n v°it aisément que

ce morphisme identifie PNl au plus grand quotient de PNl appartenant ä N2.

En particulier, tout endomorphisme de PN{ définit par passage au quotient

un endomorphisme de PNl. D'où un homomorphisme ANl->AN2 qui est

surjectif. Si A désigne l'algèbre profinie limite projective des AN, pour
N e X, il est alors clair que la cogèbre duale de A répond à la question.

Quant à Vunicité de cette cogèbre (ou de l'algèbre A), elle provient de la

remarque suivante: A est isomorphe à l'algèbre des endomorphismes du

foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas

M Me, en utilisant le théorème de Grothendieck disant qu'un foncteur
exact à droite est proreprésentable: on appliquerait ce théorème à u, d'où
P e Pro M représentant u et on obtiendrait A comme l'algèbre des

endomorphismes de P.

§3. Bigèbres

3.1. Définitions et conventions

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un AT-module C muni
d'une structure de cogèbre d:C C ® C et d'une structure d'algèbre
m : C (x) C -> C, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit C (x) C de la structure d'algèbre produit tensoriel de celle
de C par elle-même, d est un homomorphisme d'algèbres de C dans C (x) C.

Cet axiome équivaut d'ailleurs à:

(i') L'application m : C (x) C - C est un morphisme de cogèbres (pour la
structure naturelle de cogèbre de C (x) C).

Dans tout ce qui suit, nous réserverons le terme de bigèbres à celles vérifiant
les conditions suivantes:

(ii) La cogèbre (C, d) possède une co-unité e :C -> K.

(iii) L'algèbre (C, m) est commutative, associative, et possède un élément
unité 1.
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(iv) La co-unité e: C -> K est un morphisme d'algèbres et e(Y) 1.

(v) On a d{1) 1 (x) 1.

La condition (iii) permet de considérer C comme Yalgèbre affine d'un schéma

affine G sur K; on a G Spec (C). Pour tout Kx e Alg^, on note G(KX)
l'ensemble des points de G à valeurs dans Kx, autrement dit l'ensemble des

morphismes (au sens de Alg*) de C dans Kx. La condition (iv) signifie
que e est un élément de G(K). Grâce aux conditions (i) et (v), la structure de

cogèbre de C peut être interprétée comme un morphisme de G x G dans G,

qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoïdes sur K; pour tout Kx e AlgKi G(KX) a une structure naturelle de

monoïde, d'élément neutre l'image de e dans G(KX), image que l'on se

permet de noter encore e.

On appelle inversion sur G, toute application i: C -> C ayant les propriétés
suivantes :

a) i est un morphisme d'algèbres, et /(1) 1.

b) m o (lç- (x) /) o d est égal à l'endomorphisme c e(c). 1 de G.

La condition a) permet d'interpréter i comme un morphisme I: G G et la
condition b) signifie que x.I{x) e pour tout x e G(KX), et tout Kx. On voit
ainsi que, si i existe, il est unique, et que c'est un isomorphisme de C sur la

bigèbre opposée C°. L'existence de i revient à dire que G est un schéma

en groupes.

Remarque. L'application identique C -> C est un point de G (G), appelé

point canonique; nous le noterons y. De même, on peut interpréter une
inversion i de C comme un point i de G (G) et la condition b) signifie que

y\ e.

3.2. Correspondance entre comodules et G-modules

Soit E un module. Si Kx e Alg*, nous noterons End^^) le monoïde des

endomorphismes du ^-module Kx (x) E, et AutE(KX) le groupe des éléments

inversibles de End^^i). Si Kx K2 est un morphisme, on définit de manière

évidente le morphisme correspondant de End^i^) dans End^iG)- Ainsi
End^ est un foncteur de Alg^ dans la catégorie Mon des monoïdes ; de même

AutE est un foncteur de Alg^ dans la catégorie Gr des groupes.
Soient maintenant C et G Spec (C) comme ci-dessus. On a vu que G

définit un foncteur (noté également G) de Alg^ dans Mon; ce foncteur est à

valeurs dans Gr si G est un schéma en groupes.

Définition 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur End^.
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En d'autres termes, p consiste en la donnée, pour tout Kx e Alg#, d'un

morphisme de monoïdes p(^Ti) : G(KX) End^^i) et, si Kx K2 est un

morphisme dans Alg^, le diagramme

G(KX) - G(K2)

p(*,) i l P(K2)

End£(K,)- End£(A-2)

doit être commutatif.

Terminologie. Une représentation linéaire du monoïde G0 opposé à G

est appelée une antireprésentation de G. Un module E, muni d'une
représentation (resp. antireprésentation) G-> End£ est appelé un G-module à

gauche (resp. à droite).

Remarque. Si G est un schéma en groupes, et si p: G End^ est une
représentation linéaire de G dans E, il est clair que p prend ses valeurs dans
le sous-foncteur AutE de End£.

Notons maintenant Gens le foncteur G, considéré comme foncteur à

valeurs dans Ens (i.e. le composé Alg^ -S Mon -> Ens); définissons de même

End|ns. Soit p un morphisme de Gens dans End^ns. L'image par p(C) du

point canonique y e G(C) est un C-endomorphisme de C (x) E, donc est

définie par une application ^-linéaire d(p) : E -* C 0 E.

Proposition 1. (a) L'application ç>^>d(ç>) est une bijection
de l'ensemble des morphismes de Gens dans End^ns sur l'ensemble
Hom(E, C <S) E).

(b) Pour que p: Gens End^ns soit une représentation linéaire (resp.
une antireprésentation linéaire) de G dans E, il faut et il suffit que d(p)
munisse E d'une structure de C-comodule à droite (resp. à gauche).

C'est là un résultat bien connu (cf. SGAD, exposé I). Rappelons la
démonstration :

L'assertion (a) provient de ce que Gens est représentable par le couple
(C, y). En particulier, si x e G(KX), l'image de x par p(^) est l'application
K\-linéaire de Kx (x) E dans K\ (x) E qui prolonge l'application linéaire
(x (g) U) o d(p) de E dans Kx (x) E.

Pour (b), on peut se borner au cas des antireprésentations. Il faut d'abord
exprimer que p(^) transforme e en 1 pour tout Kx, et il suffit de le faire
pour Kx K. Cela donne la condition

(e (x) 1E) o d(p) \E

qui est l'axiome (2) des comodules.
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Il faut ensuite exprimer que le diagramme

Gens x Gens

a I

P^P End|ns x End"

I ß

£pens
P

End^ns

(où a désigne la loi de composition de G et ß Vopposée de la loi de

composition de End^) est commutatif. Notons Yi (resp. y2) l'homo-
morphisme de C dans C (x) C qui applique x e C dans x (x) 1 (resp. 1 (x) x);
on a Yi, y2 e G(C (x) C). De plus, il est immédiat que le foncteur Gens x Gens

est représentable par (C (x) C, yi x y2). Il suffit donc d'exprimer que les deux

images de yx x y2 dans EndE(C (x) C) coïncident. Or l'image de Yi x y2 dans

G(C(x)C) est le point donné par d\C~*C®C\ son image dans

EndE(C (x) C), identifié à Hom(E, C (g) C (x) E) est donc (d (x) 1^) o d(p). Il
faut ensuite calculer l'image de Yi x y2 par G x G P^P End^ X End^ End^.
On trouve, après un calcul sans difficultés [cf. ci-après] l'élément

(lc ® rf(p» ° rf(p). La commutativité du diagramme considéré équivaut
donc à l'axiome (1) des comodules, ce qui achève de démontrer la proposition.

[Voici le «calcul sans difficultés» en question. Il s'agit de déterminer

l'image (p e End^(C(x) C) de Yi x y2 par ß o (p x p). Si cpi (resp. (p2) est

l'image de Yi (resp. y2) par p, on a cp cp2 o cpj (puisque ß est Y opposée de

la loi de composition). De plus, cp, est caractérisé par le fait de prolonger
l'application ^-linéaire (y, ® 1^) o c/(p) : E -+ C (x) E -+ C (x) C ® E. Soit

alors x e E, et posons:

d(p) (x) £ ^(x)Xi,d(p) (x,) £ Cy 0 Xy

On a:

<Pi W (Yi 0 l£) £ Ci 0 Xi) £ 0 1 0
De même:

<P2 (Jfl) I 1 ® Cy (g) X,7

D'où:

<p(x) cp2(<Pi(x)) £ (P2(c, (X) 1 (X) X,)

£ (c,- 0 1). £ 1 ® Cij 0 Xy (<p2 étant C 0 C-linéaire)

£ C; 0 Cy 0 Xy
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D'autre part, on a

((le ® d(p))o d{p))(X) (le ® p)) (I Ci ® X/)

IC, ® Cy ® Ay

En comparant, on voit bien que l'on a

(p (lc0rf(p)) ° ^(P) •]

Remarque. La proposition précédente permet donc d'identifier les

G-modules à gauche aux C-comodules à droite, et inversement. [Il est bien

triste d'avoir ainsi à échanger sa droite et sa gauche, mais on n'y peut rien.

Toutefois, lorsque G est un schéma en groupes, on peut, au moyen de l'inverse,

transformer canoniquement tout module à droite en un module à gauche.]

Exemple. La représentation triviale p 1 de G dans un module E
correspond à la structure de comodule x h* 1 0 x sur E. Pour E K on
obtient le comodule unité.

Opérations sur les comodules

a) Produit tensoriel.

Si Ex et E2 sont des C-modules (à gauche, par exemple), on a défini
au n° 1.2 une structure de C ® C-comodule sur EX®E2. Comme

m : C ® C -> C est un morphisme de cogèbres, on déduit de là une structure
de C-comodule sur Ex ® E2. Du fait que m est commutative, cette structure
ne dépend pas de l'ordre dans lequel on écrit E\ et E2. Elle correspond
(via la prop. 1) à l'opération évidente de produit tensoriel de G-modules (la
vérification de ce fait est immédiate).

b) Contragrédiente.

Supposons que C admette une inversion, et soit E un C-comodule à gauche
qui est projectif de type fini comme module. En utilisant les isomorphismes

Hom(£, C (g) E) - Hom(E (x) E' 9 C) - Hom(£", C (x) E')

on définit sur E' une structure de C-module à droite. En utilisant l'inversion

i, on transforme cette structure en une structure de C-comodule à gauche,
dite contragrédiente de celle donnée sur E et notée Ë. Elle correspond (via la
prop. 1) à l'opération évidente de «contragrédiente d'une représentation».
[L'hypothèse faite sur E sert à assurer que le foncteur «dual» commute au
foncteur «extension des scalaires».]
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3.3. SOUS-BIGÈBRES

(On suppose à nouveau que K est un corps.)
Soit C une bigèbre (vérifiant les conditions du n° 3.1), et soit L une sous-

catégorie abélienne de Com£ vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d'une sous-cogèbre D de C.

Proposition 2. Pour que D soit une sous-bigèbre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le

comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par 0 et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogèbres CE attachées

aux comodules E e L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

Lemme 1. Si E et F sont des comodules de rang fini, on a

(*) CE 0 F CE. CF

En effet, on vérifie tout de suite que CE 0 CF est la sous-cogèbre de C 0 C
attachée au C 0 C-comodule E (S) F. Comme Ce®f est l'image de cette
dernière par m : C 0 C C, c'est bien CE.CF.

Le fait que D contienne 1 provient de ce que CE K. 1 si E K.

Proposition 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
« contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Cë= i(CE)

Corollaire. Supposons que G Spec(C) soit un schéma en

groupes. Soit Mod ^ Ici catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Mod^. Pour qu'il existe un quotient H
de G tel que L Mod^, il faut et il suffit que L vérifie les conditions

1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations

«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n'est qu'une reformulation des props. 2 et 3, étant entendu que

«groupe quotient» est pris pour synonyme de «sous-bigèbre contenant 1».

L'unicité de H provient du th. 2 du n° 2.4.
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[Il y a un résultat plus général, dû sauf erreur à Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme

ici, une sous-cogèbre d'une bigèbre, on se donne seulement une cogèbre D et

une opération de «produit tensoriel» sur la catégorie M ComfD

correspondante (la donnée de D est d'ailleurs équivalente à celle du couple formé
de M et du foncteur u: M -> Vect^, cf. n° 2.5, th. 3). En imposant
à ce produit tensoriel des conditions raisonnables (en particulier
v(E 0 F) — v{E) (x) v(F)) on démontre alors qu'il provient d'une structure de

bigèbre bien déterminée sur D\ cette bigèbre a un élément unité si M contient
un élément unité pour le produit tensoriel; elle a une inversion, si l'on se donne

une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur «Horn».)

Grothendieck a rencontré cette situation avec K Q, M catégorie des

motifs sur un corps de base k et v foncteur «cohomologie à valeurs
dans Q» relativement à un plongement de k dans C.]

3.4. Une interprétation des points de G

Soit K{ e Alg^ et soit g e G(KX) un point de G à valeurs dans Kx. Pour
tout E e Comfc, notons g(E) l'image de g par l'antireprésentation

Q(E):G(Ki)^EndE(Ki)
On a donc g(E) e End^i) End^C^ (x) E), et de plus:

(i) g(K) lKl

(ii) g(Ei®E2) g(Ei) ® g(E2).

Réciproquement :

Proposition 4. Soit vKl : Coniç. Modj^ le foncteur qui associe à
tout E e Com£ le Kx-module Kx (x) E. Soit (p: Vxl un endo-
morphisme de uKl vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(KX) tel que cp g.

D'après 3.2, l'application G(KX) - End^) est un antihomomorphisme
de monoïdes. La prop. 4 donne donc:

Corollaire. Le monoïde G(KX) est isomorphe à l'opposé du
monoïde des endomorphismes de vKl vérifiant (i) et (ii).

[C'est là un résultat analogue au théorème de dualité de Tannaka; on
reviendra là-dessus plus loin.]
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Remarques

1) Dans l'énoncé de la prop. 4, on peut remplacer Comfc par Comc;
cela revient au même, du fait que tout objet de Comc est limite inductive
d'objets de ComfC) cf. §1.

2) Lorsque G est un schéma en groupes, les g{E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(iii) g(É) g(E)\
Démonstration de la proposition 4.

Tout d'abord, soit u e Hom(C, Ki). Pour tout E e Comc, soit cpu(E)

l'endomorphisme de Kx (x) E qui prolonge l'application linéaire
dE u (g) 1

E 4 C®E Ki (g) E

On obtient ainsi un endomorphisme cpu de uKl -

Lemme 1. L'application u cpM est un isomorphisme de Hom(C, Kx}
sur le groupe des endomorphismes du Joncteur uKl.

[En fait, c'est un isomorphisme de j^-algèbres, à condition de mettre sur

Hom(C, Ki) la structure d'algèbre opposée de celle à laquelle on pense.]

Si cp e Bnd(^), formons le composé

C -> Ki® C ^ Ki® C Ki

(la première application étant x 1 (x) x, la seconde (p (C) et la troisième

I (x) e). On obtient une application linéaire

u (cp) : C -> K\

II suffit de prouver que les applications u e* cpw et cp^w(cp) sont inverses

l'une de l'autre.
Tout d'abord, si u e Hom(C, Ki), u(cpM) est le composé

d u <g) 1 1 (g) e

c-»c®c^^®c-» Ji:,,

ou encore
d 1 ® e u

C-+ C (x) C C-+Kl

c'est-à-dire w.

Soit maintenant cp e End(^). Si E est un comodule, et V un K-qspace

vectoriel, on a cp (E (x) E) cp (E) ® 1 f • (Se ramener au cas où V est de

dimension finie, puis choisir une base de V et utiliser le fait que cp est un
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morphisme de foncteurs.) En particulier, on a ^(C®!?) — (p(C) ® \E si

E e Comc. Comme dE : E C ® E est un morphisme de comodules, on a un

diagramme commutatif:
1 (g) dE

E -»• ^ ® £ -> Ki (g) C

(|)(£) I <p(C)® 1 1

1 0 C(g) 1 _^ (g) E -> 0 c (g) £ ® £.
1 <g> dE

Mais le composé (1 ® c (x) 1) ° (1 ® dE) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
q> (E)

E Ki ® E Kl ®E
est égal à (pu(£), avec u u(tp), d'où le lemme.

[Ce lemme n'a rien à voir avec les bigèbres. On aurait pu le remonter

au §2 et le déduire de l'isomorphisme Com£ ComfAo du n° 2.2.]

Lemme 2. (a) Pour que (pw vérifie la relation (i), il faut et il suffit
que u{ 1) 1.

(b) Pour que (pM vérifie la relation (ii), il faut et il suffit que u soit

un homomorphisme d'algèbres.

Si l'on prend pour E le module unité K, on a Ki (x) E K\ et (pU(E) est

la multiplication par u(1) dans Kx \ d'où (a).

Pour (b), on remarque d'abord que (ii) est vérifiée si et seulement si elle

l'est pour Ei E2 - C, i.e. si

(ii') (pM(C (x) C) cpw(C) (x) (pM(C).

Cela résulte simplement de ce que tout comodule est isomorphe à un sous-
comodule d'une somme directe de comodules tous isomorphes à C.

Reste à exprimer la condition (ii7). Soit (Xi)ieI une base de C, soient

a, b e C, et écrivons d(a) et d(b) sous la forme

d(a) £ ai (x) Xi, ai e C

d(b) £ bj ® Xj bj e C

On a alors:

cpw(C) {a) £ u(ai) ® */ > avec u{at) e Ky
et

(pu(C) (b) Y u(bj) ® Xj, avec u(bj) e K{

D'où:

(*) ((Pii(C) (g) cpu(C)) (a® b) - £ u(ai)u(bj) ® xt ® Xj
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Soit d'autre part cf:C(x)C->C(x)C(x)Cle coproduit du comodule C (g) C.

On vérifie sans difficulté que l'on a

d'(a (g) b) Yé aibJ ® xi ® XJ >

ij
d'où

(**) <pu(C (X) C) (a (g) ô) 2 i/(ûr/6/) (g) ® xy

ij
En comparant (*) et (**), on voit que (pU(C ® C) (pM(C) ® cpw(C) si w est

un homomorphisme d'algèbres. Pour prouver la réciproque, choisissons pour
(Xj)i / une base telle que 1 pour un élément 0 e / et e(x;) 0 pour
i ^ 0. On a alors a0 a et b0 ù, et l'égalité de (*) et (**) entraîne

u(a)u(b) u(ab), ce qui achève la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.

En effet, un élément de G(KX) est par définition un homomorphisme
d'algèbres u\C~+ K\ tel que u( 1) 1. La seule chose à vérifier, c'est que,

pour tout comodule E, l'endomorphisme u(E) de Kx (g) E défini par u est

égal à (pw(ii): or c'est justement la définition de u(E), cf. démonstration de

la prop. 1.

Exemple. Prenons pour K{ l'algèbre des nombres duaux sur K. La

prop. 4 fournit alors un anti-isomorphisme de l'algèbre de Lie de G sur la sous-

algèbre de Lie de End(i>) formée des endomorphismes 0 de u tels que

Q(K) 0 et 0(^ (g) E2) - Q(Et) ® lEl + \Ei ® 9(30 •

3.5. Interprétation de G comme limite projective de groupes
ALGÉBRIQUES LINÉAIRES

Définition 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algèbre sur K.

Proposition 5. Soit C une bigèbre (resp. une bigèbre possédant une
inversion i). Alors C est limite inductive filtrante de ses sous-bigèbres de type

fini contenant 1 (resp. et stables par i).

L'énoncé contenant les «resp.» équivaut à:

Corollaire. Le schéma en groupes G associé à C est limite

projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit E un C-comodule (à droite, pour
changer un peu) de rang fini et soit CE la sous-cogèbre de C correspondante.
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Pour tout n ^ 0, soit CE(n) la sous-cogèbre attachée au comodule ® E\
n

pour n 0, on convient comme d'ordinaire que (x) E K, de sorte que

C^(0) K. 1. On sait (cf. lemme 1) que

CE(n) CE...CE (n facteurs)

Il en résulte que

C(£)= I CE(n)
ri 0

est la sous-algèbre de C engendrée par CE et 1. D'où:

Proposition 6. L'algèbre C(E) est une sous-bigèbre de C contenant

1 et de type fini; c'est la plus petite sous-bigèbre de C contenant 1

et CE.

Comme C est visiblement limite inductive des C(E), cela démontre la

première partie de la prop. 5. D'autre part, lorsque C possède une
inversion /, la seconde partie de la prop. 5 résulte de la proposition plus précise

(mais évidente) suivante:

Proposition 7. L'algèbre C(E@E) est une sous-bigèbre de C

contenant 1 et stable par i; c'est la plus petite sous-bigèbre de C ayant
ces propriétés; elle est de type fini.

Si l'on note XE (resp. GE) le monoïde (resp. groupe) algébrique linéaire
associé à C(E) (resp. à C(E © E)), on voit que l'on a

G \im.XE (resp. G lim.G^)

Remarques

1) La construction de C(E © É) à partir de C(E) peut aussi se faire de

la manière suivante: au G-module E est associé un élément «déterminant»
6e, qui est un élément inversible de C, contenu dans C{E). On a:

C(E ®E) C(E)
1

&E

2) L'interprétation de XE et GE en termes de schémas est la suivante:
XE (resp. Ge) est le plus petit sous-schéma fermé du schéma End£ (resp.
GL£) des endomorphismes (resp. automorphismes) de E contenant l'image de
la représentation p : G End^ attachée à E. Cela se vérifie immédiatement
sur la construction de l'algèbre affine de End^ (resp. GE), construction que
le rédacteur trouve inutile de reproduire.
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Définition 3. Soit C une bigèbre possédant une inversion. Un
C-comodule E de rang fini est dit fidèle si C(E © È) C.

Vu ce qui précède, E est fidèle si et seulement si G -> GE est un isomor-
phisme.

Propositions. Si E est fidèle, toute représentation linéaire de G est

quotient d'une sous-représentation d'une somme directe de représentations
®{E@É).

Cela résulte du lemme 1 du n° 2.4.

Corollaire. Tout G-module simple est quotient de Jordan-Hölder
d'un ® {E © È).

Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-
v n m

sorielles de E®E par les représentations © E ® det (E) ~1, avec des

notations évidentes.

2) Il se peut que GE soit fermé dans End^ (et non pas seulement dans

GL£), autrement dit que C(E) C(E © E). C'est le cas, par exemple, si GE

est contenu dans SL^. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E © E par celles de E.

§4. Enveloppes

4.1. COMPLÉTION D'UNE ALGÈBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algèbre associative à élément unité. Soit Sd (resp. Sg9S)
l'ensemble des idéaux à droite (resp. à gauche, resp. bilatères) de codimension

finie dans A. On a Sd n Sg S et S est cofinal à la fois dans Sd et dans Sg;

en effet, si o e Sg par exemple, l'annulateur du ^4-module A/a appartient à S

et est contenu dans a.

On posera:

A lim.^4/a
<—

la limite projective étant prise sur l'ensemble ordonné filtrant S. L'algèbre A
est l'algèbre profinie complétée de A, pour la topologie définie par S (ou Sd,

ou 5g, cela revient au même). Il y a un isomorphisme évident de la catégorie
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