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48 J.-P. SERRE

2) 11 n’est pas indispensable de passer aux modules pour prouver le
lemme 1. On remarque d’abord (cf. n° 1.4, Exemple 2) que F est isomorphe
a un sous-comodule de Cx ® F, i.e. de (Cg)", avec n = rang(F). D’autre
part, Cg est isomorphe, comme comodule, & un quotient de E® E’,
c’est-a-dire de E™, ou m = rang(E). D’ou le résultat.

Exemples

1) La sous-catégorie de Com’é formée des objets semi-simples corres-
pond a la plus grande sous-cogebre semi-simple de C (la somme de toutes les
sous-cogebres simples).

2) Supposons C semi-simple, et soit (E;);c; un ensemble de repré-
sentants des classes de C-comodules simples. Posons C; = Cg,, de sorte
que C est somme directe des cogébres simples C;. Si J est une partie
de I, C; = Z C; est une sous-cogebre de C, et toute sous-cogébre de C
s’obtient de égt{e maniere, et de facon unique. La sous-catégorie correspondant
a C; est formée des comodules isomorphes a des sommes directes finies
des E;,i € J.

2.5. OU L’ON CARACTERISE Com%,

Soit M une catégorie abélienne munie des deux structures suivantes:

a) M est une catégorie sur K; cela signifie que, si E, F sont des objets de
M, HomM(E, F) est muni d’une structure de K-espace vectoriel, la compo-
sition des morphismes étant bilinéaire.

b) On se donne un foncteur v: M — Vectﬁ de M dans la catégorie des
K-espaces vectoriels de dimension finie.

On fait les Aypothéses suivantes:

(1) Le foncteur v est K-linéaire, i.e. pour tout E, F € M, I’application
v: Hom™(E, F) = Hom (v(E), v(F)) est K-linéaire.

(i) Le foncteur v est exact et fidéle.

THEOREME 3. Sous les hypotheses cz"-dessus, il existe une cogébre C
sur K (et une seule, a isomorphisme pres) telle que M soit équivalente a
Com{;, cette équivalence transformant le foncteur v en le foncteur
C-module — espace vectoriel sous-jacent.

[Ici, il est nécessaire d’interpréter M comme une petite catégorie, ou en tout
cas de supposer qu’il existe un ensemble de représentants pour les classes
d’isomorphisme d’objets de M.]
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Avant de commencer la démonstration, remarquons que les hypothéses (i)
et (ii) entrainent que Hom™(E, F) est un espace vectoriel de dimension finie
pour tout £, F € M. De plus, un sous-objet d’un objet £ de M est connu
lorsqu’on connait le sous-espace vectoriel correspondant de v(£); ’ensemble
des sous-objets de E s’identifie ainsi & un sous-ensemble réticulé de I’ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On
a des résultats analogues pour les objets quotients.

D’autre part, si £ € M, nous noterons My la sous-catégorie pleine de M
formée des quotients F/G, ou F est isomorphe a un sous-objet d’un
E" (n entier > 0 quelconque).

Enfin, si £ est un objet de M, et si X est une partie de ¥V(£), nous dirons
que X engendre E si tout sous-objet F de £ tel que v(F) O X est égal a E.

Démonstration du théoréme 3
a) Le cas fini; une majoration.

C’est celui ou il existe un objet £ de M tel que My = M. Soit n = rangg v(E).

LEMME 2. Soit F  un objet de M pouvant étre engendré par un
élément (cf. ci-dessus). On a

rangx V(F) < n?.

Par hypotheése, on peut écrire F comme quotient F,/F,, ou F; est
isomorphe & un sous-objet d’un E™, pour m convenable. Soit x € v(F)
engendrant F et soit x; un élément de v(F,) dont I’image dans v(F) est x.
Soit G le plus petit sous-objet de E™ tel que v(G) contienne x,. On a G C F,
et 'image de G dans F = Fy/F; est égale & F. 1l suffit donc de prouver que
rangx v(G) < n*. Si m < n, c’est évident. Supposons done que m > n. On a
xy € v(G) Cu(E™) = v(E)™. Soient yi,...,¥, les composantes de x,
considéré comme élément de v(E)™. Puisque m > n, il existe des @; € K, non
tous nuls, tels que ¥ a;y; = 0. Or les 4; définissent un morphisme surjectif
Em™— Ej si N est le noyau de ce morphisme, on a N = E”-!, comme on le
voit facilement. D’autre part, on a x; € v(N), d’ot GC N puisque x;
engendre G. On a donc obtenu un plongement de G dans Em-1. d’ou le
lemme, en raisonnant par récurrence sur 1.

b) Le cas fini; construction d’un générateur projectif.

Les hypothéeses étant les mémes que ci-dessus, on choisit un objet P de M
pouvant étre engendré par un élément x € v(P), et tel que v(P) soit de rang

maximum parmi ceux jouissant de cette propriété. C’est possible en vertu du
Lemme 2.
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LEMME 3. (i) Le couple (P,x) représente le foncteur v.
(i) P est un générateur projectif de M.

Il suffit de prouver (i); ’assertion (i) en résultera, puisque le foncteur v
est exact et fidéle.

Soient donc F € M, et y € v(F). Il nous faut prouver 1’existence et I’unicité
d’un morphisme f:P — F transformant x en y. L’unicité provient de ce
que x engendre P. Pour démontrer Pexistence, soit Q le plus petit sous-objet
de P X F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pr;
est surjectif, du fait que P est engendré par x. On a donc

rangg V(Q) = rangg V(P) ;

mais le caractére maximal de v(P) entraine qu’il y a égalité; le morphisme
Q — P est donc un isomorphisme. En composant son inverse avec la seconde
projection Q — F, on obtient un morphisme f ayant la propriété voulue.

¢) Le cas fini; fin de démonstration.

Soit A D’algébre des endomorphismes de P. C’est une K-algébre de
dimension finie. Le lemme suivant est bien connu:

LEMME 4. 1l existe un foncteur @: MOd{;o — M et un seul (a isomor-
phisme prés) qui soit exact a gauche et transforme A (considéré comme
A-module a droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons briévement la démonstration. Pour chaque A-module & droite
H de rang fini, on choisit une présentation finie de H:

AP—%AQ—)H-—-)()

ou o est une p X g-matrice a coefficients dans 4. Cette matrice définit un
morphisme P? — P9 et ’on prend pour ¢ (H) le conoyau de ce morphisme.
On prolonge de facon évidente ¢ en un foncteur Mod{;o — M et I’on vérifie
qu’il a la propriété voulue. On note généralement ce foncteur H— H & 4 P.
C’est un adjoint du foncteur F— HomM (P, F). Son unicité est immédiate.
Le fait que ce soit une équivalence résulte de ce que P est un générateur
projectif de M.

De plus, I’équivalence ¢: H— H @ 4 P transforme le foncteur «espace
vectoriel sous-jacent & un A-module» en un foncteur isomorphe a v (en effet
le premier foncteur est représentable par A, le second par P, et ¢ transforme
A en P). On peut donc prendre pour cogebre la cogebre duale de I’algebre A4,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X ’ensemble des sous-catégories N de M telles qu’il existe E € M avec
N = My. L’ensemble X est ordonné filtrant puisque Mg, « g, contient Mg, et
Mg,. Si N € X, soit comme ci-dessus (Py, xy) un couple représentant la
restriction 4 N du foncteur v, et soit Ay = End(Py). Si Ny D N,, il existe un
unique morphisme Py, = Py, transformant xy, en xy,; on voit aisément que
ce morphisme identifie Py, au plus grand quotient de Py, appartenant a N,.
En particulier, tout endomorphisme de Py, définit par passage au quotient
un endomorphisme de Py,. D’oi un homomorphisme Ay, = Ay, qui est
surjectif. Si A désigne I’algébre profinie limite projective des Ay, pour
N € X, il est alors clair que la cogébre duale de A répond a la question.

Quant a Punicité de cette cogébre (ou de 1’algébre A), elle provient de la
remarque suivante: A est isomorphe a [’algébre des endomorphismes du
foncteur v, munie de la topologie de la convergence simple.

Remarque. 1l est probablement possible d’éviter le passage par le cas
M = Mg, en utilisant le théoréme de Grothendieck disant qu’un foncteur
exact a droite est proreprésentable: on appliquerait ce théoreme a v, d’ou
P € Pro M représentant v et on obtiendrait 4 comme 1’algébre des endo-
morphismes de P.

§3. BIGEBRES

3.1. DEFINITIONS ET CONVENTIONS

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu’une bigébre sur K est un K-module C muni
d’une structure de cogebre d:C—> C&® C et d’une structure d’algébre
m:C & C— C, ces structures vérifiant I’axiome suivant:

(i) Sil’on munit C ® C de la structure d’algébre produit tensoriel de celle
de C par elle-m€me, d est un homomorphisme d’algébres de C dans C R C.

Cet axiome équivaut d’ailleurs a:

(i") L’application m: C @ C — C est un morphisme de cogébres (pour la
structure naturelle de cogebre de C Q C).

Dans tout ce qui suit, nous réserverons le terme de bigébres a celles vérifiant
les conditions suivantes:

(i) La cogebre (C, d) posséde une co-unité e: C — K.

(i) L’algebre (C, m) est commutative, associative, et posséde un élément
unité 1.
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