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48 J.-P. SERRE

2) Il n'est pas indispensable de passer aux modules pour prouver le

lemme 1. On remarque d'abord (cf. n° 1.4, Exemple 2) que Fest isomorphe
à un sous-comodule de (x) F, i.e. de (CE)n, avec n rang(F). D'autre
part, CE est isomorphe, comme comodule, à un quotient de F(x)F',
c'est-à-dire de Fm, où m rang (F). D'où le résultat.

Exemples

1) La sous-catégorie de Com£ formée des objets semi-simples correspond

à la plus grande sous-cogèbre semi-simple de C (la somme de toutes les

sous-cogèbres simples).

2) Supposons C semi-simple, et soit (F/)/e/ un ensemble de

représentants des classes de C-comodules simples. Posons C, CE., de sorte

que C est somme directe des cogèbres simples C/. Si J est une partie
de /, Cj Yé Ci est une sous-cogèbre de C, et toute sous-cogèbre de C

/ e J
s'obtient de cette manière, et de façon unique. La sous-catégorie correspondant
à Cj est formée des comodules isomorphes à des sommes directes finies
des Ej J e J.

2.5. OÙ L'ON CARACTÉRISE Comfc

Soit M une catégorie abélienne munie des deux structures suivantes :

a) M est une catégorie sur F; cela signifie que, si F, F sont des objets de

M, HomM(F, F) est muni d'une structure de F-espace vectoriel, la composition

des morphismes étant bilinéaire.

b) On se donne un foncteur v : M -* Vect^ de M dans la catégorie des

F-espaces vectoriels de dimension finie.

On fait les hypothèses suivantes:

(i) Le foncteur u est K-linéairey i.e. pour tout F, F e M, l'application
u: HomM(E,F) Hom(i>(F), v(Fj) est F-linéaire.

(ii) Le foncteur v est exact et fidèle.

Théorème 3. Sous les hypothèses ci-dessus, il existe une cogèbre C

sur F (et une seule, à isomorphisme près) telle que M soit équivalente à

Comfc, cette équivalence transformant le foncteur u en le foncteur
C-module espace vectoriel sous-jacent.

[Ici, il est nécessaire d'interpréter M comme une petite catégorie, ou en tout
cas de supposer qu'il existe un ensemble de représentants pour les classes

d'isomorphisme d'objets de M.]
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Avant de commencer la démonstration, remarquons que les hypothèses (i)

et (ii) entraînent que HomM(Is, F) est un espace vectoriel de dimension finie
pour tout E, F e M. De plus, un sous-objet d'un objet E de M est connu

lorsqu'on connaît le sous-espace vectoriel correspondant de u(E); l'ensemble
des sous-objets de E s'identifie ainsi à un sous-ensemble réticulé de l'ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On

a des résultats analogues pour les objets quotients.
D'autre part, si E e M, nous noterons ME la sous-catégorie pleine de M

formée des quotients F/ G, où F est isomorphe à un sous-objet d'un
En (n entier > 0 quelconque).

Enfin, si E est un objet de M, et si X est une partie de V(E), nous dirons

que X engendre E si tout sous-objet F de E tel que v{F) D X est égal à E.

Démonstration du théorème 3

a) Le cas fini; une majoration.

C'est celui où il existe un objet E de M tel que ME M. Soit n rangKu(E).

Lemme 2. Soit F un objet de M pouvant être engendré par un
élément (cf. ci-dessus). On a

rangKu(F) < n2

Par hypothèse, on peut écrire F comme quotient Fx/F2i où Fx est

isomorphe à un sous-objet d'un Em, pour m convenable. Soit x e u(F)
engendrant F et soit xx un élément de d(Fx) dont l'image dans u(F) est x.
Soit G le plus petit sous-objet de Em tel que u(G) contienne xx. On a G C Fx

et l'image de G dans F Fx/F2 est égale à F. Il suffit donc de prouver que
rang*y(G) ^ n2. Si m ^ n, c'est évident. Supposons donc que m > n. On a

xx e u(G) C u(Em) u(E)m. Soient yu les composantes de Xi,
considéré comme élément de u(E)m. Puisque m > n, il existe des at e K, non
tous nuls, tels que P a^i 0. Or les at définissent un morphisme surjectif
Em -> E; si N est le noyau de ce morphisme, on a N - Em~l, comme on le
voit facilement. D'autre part, on a xx e u(N), d'où G C N puisque xx
engendre G. On a donc obtenu un plongement de G dans Em~1 ; d'où le
lemme, en raisonnant par récurrence sur m.

b) Le cas fini; construction d'un générateur projectif
Les hypothèses étant les mêmes que ci-dessus, on choisit un objet P de M

pouvant être engendré par un élément x u(P), et tel que u(P) soit de rang
maximum parmi ceux jouissant de cette propriété. C'est possible en vertu du
Lemme 2.
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Lemme 3. (i) Le couple (P, x) représente le foncteur u.

(ii) P est un générateur projectif de M.

Il suffit de prouver (i); l'assertion (ii) en résultera, puisque le foncteur v

est exact et fidèle.

Soient donc F e M, et y e v(F). Il nous faut prouver l'existence et l'unicité
d'un morphisme / : P -> F transformant x en y. L'unicité provient de ce

que x engendre P. Pour démontrer l'existence, soit Q le plus petit sous-objet
de P x F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pri
est surjectif, du fait que P est engendré par x. On a donc

rangKv(Q) ^ rangKv(P) ;

mais le caractère maximal de u(P) entraîne qu'il y a égalité; le morphisme
Q P est donc un isomorphisme. En composant son inverse avec la seconde

projection Q - P, on obtient un morphisme / ayant la propriété voulue.

c) Le cas fini; fin de démonstration.

Soit A l'algèbre des endomorphismes de P. C'est une P-algèbre de

dimension finie. Le lemme suivant est bien connu:

Lemme 4. Il existe un foncteur (p: Mod^o M et un seul (à isomorphisme

près) qui soit exact à gauche et transforme A (considéré comme
A -module à droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons brièvement la démonstration. Pour chaque A -module à droite

H de rang fini, on choisit une présentation finie de H:

AP A* -> H-+ 0

où a est une p x q-matrice à coefficients dans A. Cette matrice définit un
morphisme Pp -> Pq et l'on prend pour cp(if) le conoyau de ce morphisme.
On prolonge de façon évidente (p en un foncteur Mod^o -Met l'on vérifie

qu'il a la propriété voulue. On note généralement ce foncteur H h» H (x)A P.

C'est un adjoint du foncteur HomM(P, F). Son unicité est immédiate.

Le fait que ce soit une équivalence résulte de ce que P est un générateur

projectif de M.
De plus, l'équivalence cp :H^H®AP transforme le foncteur «espace

vectoriel sous-jacent à un A -module» en un foncteur isomorphe à v (en effet
le premier foncteur est représentable par A, le second par P, et (p transforme
A en P). On peut donc prendre pour cogèbre la cogèbre duale de l'algèbre A,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe E e M avec

N Me- L'ensemble X est ordonné filtrant puisque ME{xe2 contient MEï et

MEl. Si N e X, soit comme ci-dessus (PNixN) un couple représentant la

restriction à TV du foncteur v, et soit AN End(PAr). Si Ni D N2, il existe un

unique morphisme Pn2 transformant xEfl en Xm2\ °n v°it aisément que

ce morphisme identifie PNl au plus grand quotient de PNl appartenant ä N2.

En particulier, tout endomorphisme de PN{ définit par passage au quotient

un endomorphisme de PNl. D'où un homomorphisme ANl->AN2 qui est

surjectif. Si A désigne l'algèbre profinie limite projective des AN, pour
N e X, il est alors clair que la cogèbre duale de A répond à la question.

Quant à Vunicité de cette cogèbre (ou de l'algèbre A), elle provient de la

remarque suivante: A est isomorphe à l'algèbre des endomorphismes du

foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas

M Me, en utilisant le théorème de Grothendieck disant qu'un foncteur
exact à droite est proreprésentable: on appliquerait ce théorème à u, d'où
P e Pro M représentant u et on obtiendrait A comme l'algèbre des

endomorphismes de P.

§3. Bigèbres

3.1. Définitions et conventions

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un AT-module C muni
d'une structure de cogèbre d:C C ® C et d'une structure d'algèbre
m : C (x) C -> C, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit C (x) C de la structure d'algèbre produit tensoriel de celle
de C par elle-même, d est un homomorphisme d'algèbres de C dans C (x) C.

Cet axiome équivaut d'ailleurs à:

(i') L'application m : C (x) C - C est un morphisme de cogèbres (pour la
structure naturelle de cogèbre de C (x) C).

Dans tout ce qui suit, nous réserverons le terme de bigèbres à celles vérifiant
les conditions suivantes:

(ii) La cogèbre (C, d) possède une co-unité e :C -> K.

(iii) L'algèbre (C, m) est commutative, associative, et possède un élément
unité 1.
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