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2) Une sous-cogèbre de rang 1 (sur K) de C a pour base un élément non

nul x tel que d(x) x (x) x; on a alors e(x) 1.

3) Si D est une cogèbre, et si /: D -> C est un morphisme de cogèbres,

f(D) est une sous-eogèbre de C.

4) Soit E un comodule sur C, soit (*>/), e/ une base de E, et soient Cy e C

tels que dE{Vi) Hcz7®^, cf. n° 1.2, Remarque 3. Il résulte de la

formule (1 ') du n° 1.2 que le sous-espace vectoriel CE engendré par les Cy est

une sous-cogèbre de C. Cette sous-cogèbre ne dépend pas du choix de la

base (i>z), car c'est l'image de l'application E ® E' C associée à dE

(cf. n° 1.2, Remarque 2). On peut aussi caractériser CE comme le plus petit

sous-espace vectoriel X de C tel que Im(^) C X (S) E.

Noter que, si D est une sous-cogèbre de C contenant CE, le coproduit dE

applique E dans D (x) E, donc munit E d'une structure de D-comodule\
inversement, tout D-comodule peut évidemment être considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogèbre CE contient E. En effet, CE

est l'image de E (x) E' -> C; d'autre part la restriction de e à E est un élément

eE de E' et l'on vérifie tout de suite que, si x g E, l'image de x (x) eE dans C
est égale à x.

6) Supposons C de rang fini (sur K), et soit A l'algèbre duale
(cf. n° 1.1, Exemple 3). Les sous-cogèbres de C correspondent bijectivement
(par dualité) aux algèbres quotients de A (donc aussi aux idéaux bilatères
de A).

Théorème 1. La cogèbre C est réunion filtrante croissante de ses sous-
cogèbres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogèbre de rang fini. Or, d'après le corollaire à la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogèbre CE associée à E (cf. Exemple 4) répond à la
question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. Dualité entre cogèbres et algèbres profinies

Définition 2. On appelle algèbre profinie une algèbre topologique
séparée, complète., possédant une base de voisinages de 0 formée d'idéaux
bilatères de codimension finie.
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Il revient au même de dire qu'une telle algèbre est limite projective filtrante
d'algèbres de rang fini; d'où le nom de «profini».

Soit maintenant C une cogèbre, et soit A C son dual. La structure de

cogèbre de C définit sur A une structure d'algèbre (cf. Alg. III); d'autre part,
on peut munir A de la topologie de la convergence simple sur C (K étant lui-
même muni de la topologie discrète).

Proposition 1. (a) L'algèbre topologique A C' est une algèbre

profinie. Les idéaux bilatères ouverts de A sont les orthogonaux des sous-
cogèbres de rang fini de C.

(b) Inversementy toute algèbreprofinie qui est associative etpossède un
élément unité est la duale d'une cogèbre possédant une co-unité, définie à

isomorphisme unique près.

Pour prouver (a), on remarque que C lim .X, où X parcourt l'ensemble
ordonné filtrant des sous-cogèbres de C de rang fini (cf. th. 1). On a alors

A \im.Xr et les X' sont des algèbres de rang fini. Le noyau de A X'
est l'orthogonal a* de Xdans A; c'est un idéal bilatère ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.

On a X ^4/a)'; la structure d'algèbre de A/a définit sur X une structure
de cogèbre, et on en déduit que X est une sous-cogèbre de C.

L'assertion (b) est tout aussi évidente.

La correspondance «cogèbres & algèbres profinies» établie ci-dessus se

prolonge en une correspondance «comodules & modules». De façon précise,

soient

Com^ la catégorie des C-comodules à gauche de rang fini,

Mod^ la catégorie des A-modules à gauche de rang fini, dont l'annu-
lateur est ouvert (i.e. qui sont des A -modules topologiques si on les munit de

la topologie discrète).
Si EeCom£, l'application E C (g> E définit par dualité une

application A ® E' -> E\ et l'on voit tout de suite que cette application fait de E'
un A -module à gauche topologique discret.

Proposition 2. Le foncteur E^> E' défini ci-dessus est une équivalence

de la catégorie Comfc sur la catégorie opposée à Mod^.
C'est immédiat.
Noter aussi que, si F est un A -module à gauche de rang fini, F' a une

structure naturelle de ^-module à gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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Corollaire. La catégorie Comfc est isomorphe à la catégorie

Mod fAo.

Remarque. Soit E e Com^; munissons E' (resp. E) de la structure

correspondante de A -module à gauche (resp. à droite). Si x e E, x' e E' et

a, b e A, on a alors les formules:

(1) <dE(x), a®x'> <x,ax'> <xa,x'>
et

(2) <d(E\x), a ® b (g) x'> <x,abx'> <xab,x'>
avec

df (d® h) ° dE (le (8) dE) o dE

2.3. Traductions

Tout résultat sur les modules donne, grâce à la prop. 2 et à son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) Si E e Com^, la sous-cogèbre CE de C attachée à E (cf. n° 2.1) est

la duale de la sous-algèbre de End(i?) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n° 1.4) est la traduction
du fait que A est un A -module projectif (puisque libre de rang 1

c) Une cogèbre est dite simple si elle est ^ 0 et n'admet pas d'autre sous-
cogèbre que 0 et elle-même; c'est alors le dual d'une algèbre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogèbres simples, et

on vérifie alors que l'on peut choisir cette somme de telle sorte qu'elle soit
directe.

On a:

Proposition 3. Pour que Comfc soit une catégorie semi-simple, il
faut et il suffit que C soit semi-simple.

De plus, si c'est le cas, et si Ea est une famille de représentants des classes
de comodules simples sur C, la cogèbre C est somme directe des cogèbres
CEa, qui sont simples.

On a également:

Corollaire. Les conditions suivantes sont équivalentes:

a) C est somme directe de cogèbres de la forme M„(i£).
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