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2) Une sous-cogébre de rang 1 (sur K) de C a pour base un ¢élément non
nul x tel que d(x) = x ® x; on a alors e(x) = 1.

3) Si D est une cogébre, et si f: D — C est un morphisme de cogebres,
f(D) est une sous-cogebre de C.

4) Soit E un comodule sur C, soit (v;);; une base de E, et soient ¢;; € C
tels que dg(v;) = E ¢ ®v;, cf. n° 1.2, Remarque 3. Il résulte de la
formule (1’) du n° 1.2 que le sous-espace vectoriel Cg engendré par les c;; est
une sous-cogébre de C. Cette sous-cogébre ne dépend pas du choix de la
base (v;), car c’est I’image de l’application E ® E’— C associée a dg
(cf. n° 1.2, Remarque 2). On peut aussi caractériser Cr comme le plus petit
sous-espace vectoriel X de C tel que Im(dz) C X ® E.

Noter que, si D est une sous-cogébre de C contenant Cg, le coproduit dg
applique E dans D ® E, donc munit £ d’une structure de D-comodule;
inversement, tout D-comodule peut évidemment €tre considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogebre Cg contient E. En effet, Cg
est I’'image de £ ® E’ — C,; d’autre part la restriction de e a E est un élément
er de E’ et ’on vérifie tout de suite que, si x € E, 'image de x ® ez dans C
est égale a x.

6) Supposons C de rang fini (sur K), et soit A I’algébre duale
(cf. n°® 1.1, Exemple 3). Les sous-cogebres de C correspondent bijectivement

(par dualité) aux algébres quotients de A (donc aussi aux idéaux bilatéres
de A). '

THEOREME 1. La cogebre C est réunion filtrante croissante de ses sous-
cogebres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogebre de rang fini. Or, d’aprés le corollaire a la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogébre Cr associée a E (cf. Exemple 4) répond a la

question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. DUALITE ENTRE COGEBRES ET ALGEBRES PROFINIES

DEFINITION 2. On appelle algébre profinie une algébre topologique
séparée, compléte, possédant une base de voisinages de 0 formée d’idéaux
bilatéres de codimension finie.
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Il revient au méme de dire qu’une telle algébre est limite projective filtrante
d’algébres de rang fini; d’ou le nom de «profini».

Soit maintenant C une cogébre, et soit A = C’ son dual. La structure de
cogebre de C définit sur A une structure d’algebre (cf. Alg. 1II); d’autre part,
on peut munir 4 de la topologie de la convergence simple sur C (K étant lui-
méme muni de la topologie discréte).

PROPOSITION 1. (a) L’algebre topologique A = C’ est une algébre
profinie. Les idéaux bilatéres ouverts de A sont les orthogonaux des sous-
cogebres de rang fini de C.

(b) Inversement, toute algebre profinie qui est associative et possede un élé-
ment unité est la duale d’une cogeébre possédant une co-unité, définie a
isomorphisme unique pres.

Pour prouver (a), on remarque que C = li_I)n . X, ou X parcourt ’ensemble
ordonné filtrant des sous-cogébres de C de rang fini (cf. th. 1). On a alors
A = li(Ln.X " et les X’ sont des algébres de rang fini. Le noyau de 4 - X"’
est I’orthogonal ay de X dans A4; c’est un idéal bilatére ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.
On a X = (A/a)"; la structure d’algebre de A/a définit sur X une structure
de cogébre, et on en déduit que X est une sous-cogebre de C.

L’assertion (b) est tout aussi évidente.

La correspondance «cogébres < algébres profinies» établie ci-dessus se
prolonge en une correspondance «comodules ¢ modules». De facon précise,
soient

Comf; la catégorie des C-comodules a gauche de rang fini,

Modf1 la catégorie des A-modules a gauche de rang fini, dont I’annu-
lateur est ouvert (i.e. qui sont des A-modules topologiques si on les munit de
la topologie discréte).

Si Ee Comfc, I’application E — C ® E définit par dualité une appli-
cation A ® E’' — E’, et I’on voit tout de suite que cette application fait de E’
un A-module a gauche topologique discret.

PROPOSITION 2. Le foncteur E— E’ défini ci-dessus est une équiva-
lence de la catégorie Com’; sur la catégorie opposée a Mod{;.

C’est immédiat.

Noter aussi que, si F est un A-module a gauche de rang fini, F’ a une
structure naturelle de A°-module a gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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COROLLAIRE. La catégorie Com{: est isomorphe a la catégorie
MOd{qO .

Remarque. Soit E € Com’é; munissons E’ (resp. E) de la structure
correspondante de 4-module & gauche (resp. a droite). Si x € E, x" € E’ et
a,b e A, on a alors les formules:

(D <dg(®¥), a®x'> = <x,ax'> = <xa,x">

et

) <dPX), a® bR x> = <x,abx’> = <xab,x’ >,
avec

dP = ([d® 1g) 0 dg = (lc ® dg) © dg .

2.3. TRADUCTIONS

Tout résultat sur les modules donne, grace a la prop. 2 et a son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) SiEe Com{;, la sous-cogeébre Cr de C attachée a E (cf. n° 2.1) est

la duale de la sous-algebre de End(FE) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n°® 1.4) est la traduction
du fait que A est un A-module projectif (puisque libre de rang 1!).

c) Une cogebre est dite simple si elle est # 0 et n’admet pas d’autre sous-
cogebre que O et elle-méme; c’est alors le dual d’une algébre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogébres simples, et

on verifie alors que ’on peut choisir cette somme de telle sorte qu’elle soit
directe.

On a:

PROPOSITION 3. Pour que Com’é soit une catégorie semi-simple, il
Jaut et il suffit que C soit semi-simple.

De plus, si c’est le cas, et si E, est une famille de représentants des classes

de comodules simples sur C, la cogébre C est somme directe des cogebres
Cg,, qui sont simples.

On a également:

COROLLAIRE. Les conditions suivantes sont éguivalentes:

a) C est somme directe de cogébres de la forme M, (K).
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