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42 J.-P. SERRE

D’autre part, I’axiome (2) de la déf. 1 montre que V° est contenu dans
(e ® 1p) (C® V), donc dans V. Enfin, il est clair que tout sous-comodule
de E contenu dans V est contenu dans V°, cqfd.

Nous dirons qu’un comodule est de type fini (resp. libre, projectif, ...) si
c’est un K-module de type fini (resp. un K-module libre, un K-module
projectif, ...).

COROLLAIRE. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
de(W) est un sous-module de type fini de C ® E. On peut donc trouver un
sous-module V de type fini de E tel que C ® V contienne dg(W). Soit V°
I’ensemble des x € E tels que de(x) € C&® V. D’aprés la proposition, V¢ est
un sous-comodule de E contenu dans V, donc de type fini (puique K est
noethérien). Il est clair que V° contient W, cqfd.

§2. COGEBRES SUR UN CORPS
A partir de maintenant, ’anneau de base K est un corps.

2.1. SOUS-COGEBRES

Soit C une cogebre sur K, de coproduit d et de co-unité e.
DEFINITION 1. Un sous-espace vectoriel X de C est appelé une sous-
cogébre de C si d(X) est contenu dans X @ X.

S’il en est ainsi, ’application linéaire dyx: X — X ® X induite par d
munit X d’une structure de cogébre, ayant pour co-unité la restriction
de e a X.

Exemples

1) Si (X;);cs est une famille de sous-cogebres de C, la somme des X; et
I’intersection des X; sont des sous-cogebres de C. Cela se vérifie au moyen
des formules:

Y Xi®X) C (Y X)® (Y X)
NX®X) =(NX)®(N X)) .
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2) Une sous-cogébre de rang 1 (sur K) de C a pour base un ¢élément non
nul x tel que d(x) = x ® x; on a alors e(x) = 1.

3) Si D est une cogébre, et si f: D — C est un morphisme de cogebres,
f(D) est une sous-cogebre de C.

4) Soit E un comodule sur C, soit (v;);; une base de E, et soient ¢;; € C
tels que dg(v;) = E ¢ ®v;, cf. n° 1.2, Remarque 3. Il résulte de la
formule (1’) du n° 1.2 que le sous-espace vectoriel Cg engendré par les c;; est
une sous-cogébre de C. Cette sous-cogébre ne dépend pas du choix de la
base (v;), car c’est I’image de l’application E ® E’— C associée a dg
(cf. n° 1.2, Remarque 2). On peut aussi caractériser Cr comme le plus petit
sous-espace vectoriel X de C tel que Im(dz) C X ® E.

Noter que, si D est une sous-cogébre de C contenant Cg, le coproduit dg
applique E dans D ® E, donc munit £ d’une structure de D-comodule;
inversement, tout D-comodule peut évidemment €tre considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogebre Cg contient E. En effet, Cg
est I’'image de £ ® E’ — C,; d’autre part la restriction de e a E est un élément
er de E’ et ’on vérifie tout de suite que, si x € E, 'image de x ® ez dans C
est égale a x.

6) Supposons C de rang fini (sur K), et soit A I’algébre duale
(cf. n°® 1.1, Exemple 3). Les sous-cogebres de C correspondent bijectivement

(par dualité) aux algébres quotients de A (donc aussi aux idéaux bilatéres
de A). '

THEOREME 1. La cogebre C est réunion filtrante croissante de ses sous-
cogebres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogebre de rang fini. Or, d’aprés le corollaire a la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogébre Cr associée a E (cf. Exemple 4) répond a la

question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. DUALITE ENTRE COGEBRES ET ALGEBRES PROFINIES

DEFINITION 2. On appelle algébre profinie une algébre topologique
séparée, compléte, possédant une base de voisinages de 0 formée d’idéaux
bilatéres de codimension finie.
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