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42 J.-P. SERRE

D'autre part, l'axiome (2) de la déf. 1 montre que V° est contenu dans

(e (x) 1E) (C(x) F), donc dans F. Enfin, il est clair que tout sous-comodule

de E contenu dans F est contenu dans F0, cqfd.

Nous dirons qu'un comodule est de type fini (resp. libre, projectif, si

c'est un Ä'-module de type fini (resp. un iCmodule libre, un iCmodule

projectif,

Corollaire. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
dE(W) est un sous-module de type fini de C (x) E. On peut donc trouver un
sous-module F de type fini de E tel que C (x) F contienne dE(W). Soit V°
l'ensemble des x e E" tels que dE(x) e C (x) F. D'après la proposition, V° est

un sous-comodule de E contenu dans V, donc de type fini (puique K est

noethérien). Il est clair que V° contient W, cqfd.

§2. COGÈBRES SUR UN CORPS

A partir de maintenant, l'anneau de base K est un corps.

2.1. SOUS-COGÈBRES

Soit C une cogèbre sur K, de coproduit d et de co-unité e.

Définition 1. Un sous-espace vectoriel X de C est appelé une sous-

cogèbre de C si d(X) est contenu dans X ® X.

S'il en est ainsi, l'application linéaire dx'-X^X®X induite par d

munit X d'une structure de cogèbre, ayant pour co-unité la restriction

de e à X.

Exemples

1) Si (Xi)ieI est une famille de sous-cogèbres de C, la somme des Xt et

l'intersection des Xt sont des sous-cogèbres de C. Cela se vérifie au moyen
des formules:

E (XiQXi) c (E X,)® (E
n (Xi®Xi) =(ni;)®(n x,).
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2) Une sous-cogèbre de rang 1 (sur K) de C a pour base un élément non

nul x tel que d(x) x (x) x; on a alors e(x) 1.

3) Si D est une cogèbre, et si /: D -> C est un morphisme de cogèbres,

f(D) est une sous-eogèbre de C.

4) Soit E un comodule sur C, soit (*>/), e/ une base de E, et soient Cy e C

tels que dE{Vi) Hcz7®^, cf. n° 1.2, Remarque 3. Il résulte de la

formule (1 ') du n° 1.2 que le sous-espace vectoriel CE engendré par les Cy est

une sous-cogèbre de C. Cette sous-cogèbre ne dépend pas du choix de la

base (i>z), car c'est l'image de l'application E ® E' C associée à dE

(cf. n° 1.2, Remarque 2). On peut aussi caractériser CE comme le plus petit

sous-espace vectoriel X de C tel que Im(^) C X (S) E.

Noter que, si D est une sous-cogèbre de C contenant CE, le coproduit dE

applique E dans D (x) E, donc munit E d'une structure de D-comodule\
inversement, tout D-comodule peut évidemment être considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogèbre CE contient E. En effet, CE

est l'image de E (x) E' -> C; d'autre part la restriction de e à E est un élément

eE de E' et l'on vérifie tout de suite que, si x g E, l'image de x (x) eE dans C
est égale à x.

6) Supposons C de rang fini (sur K), et soit A l'algèbre duale
(cf. n° 1.1, Exemple 3). Les sous-cogèbres de C correspondent bijectivement
(par dualité) aux algèbres quotients de A (donc aussi aux idéaux bilatères
de A).

Théorème 1. La cogèbre C est réunion filtrante croissante de ses sous-
cogèbres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogèbre de rang fini. Or, d'après le corollaire à la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogèbre CE associée à E (cf. Exemple 4) répond à la
question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. Dualité entre cogèbres et algèbres profinies

Définition 2. On appelle algèbre profinie une algèbre topologique
séparée, complète., possédant une base de voisinages de 0 formée d'idéaux
bilatères de codimension finie.
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