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D'autre part, l'axiome (2) de la déf. 1 montre que V° est contenu dans

(e (x) 1E) (C(x) F), donc dans F. Enfin, il est clair que tout sous-comodule

de E contenu dans F est contenu dans F0, cqfd.

Nous dirons qu'un comodule est de type fini (resp. libre, projectif, si

c'est un Ä'-module de type fini (resp. un iCmodule libre, un iCmodule

projectif,

Corollaire. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
dE(W) est un sous-module de type fini de C (x) E. On peut donc trouver un
sous-module F de type fini de E tel que C (x) F contienne dE(W). Soit V°
l'ensemble des x e E" tels que dE(x) e C (x) F. D'après la proposition, V° est

un sous-comodule de E contenu dans V, donc de type fini (puique K est

noethérien). Il est clair que V° contient W, cqfd.

§2. COGÈBRES SUR UN CORPS

A partir de maintenant, l'anneau de base K est un corps.

2.1. SOUS-COGÈBRES

Soit C une cogèbre sur K, de coproduit d et de co-unité e.

Définition 1. Un sous-espace vectoriel X de C est appelé une sous-

cogèbre de C si d(X) est contenu dans X ® X.

S'il en est ainsi, l'application linéaire dx'-X^X®X induite par d

munit X d'une structure de cogèbre, ayant pour co-unité la restriction

de e à X.

Exemples

1) Si (Xi)ieI est une famille de sous-cogèbres de C, la somme des Xt et

l'intersection des Xt sont des sous-cogèbres de C. Cela se vérifie au moyen
des formules:

E (XiQXi) c (E X,)® (E
n (Xi®Xi) =(ni;)®(n x,).
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2) Une sous-cogèbre de rang 1 (sur K) de C a pour base un élément non

nul x tel que d(x) x (x) x; on a alors e(x) 1.

3) Si D est une cogèbre, et si /: D -> C est un morphisme de cogèbres,

f(D) est une sous-eogèbre de C.

4) Soit E un comodule sur C, soit (*>/), e/ une base de E, et soient Cy e C

tels que dE{Vi) Hcz7®^, cf. n° 1.2, Remarque 3. Il résulte de la

formule (1 ') du n° 1.2 que le sous-espace vectoriel CE engendré par les Cy est

une sous-cogèbre de C. Cette sous-cogèbre ne dépend pas du choix de la

base (i>z), car c'est l'image de l'application E ® E' C associée à dE

(cf. n° 1.2, Remarque 2). On peut aussi caractériser CE comme le plus petit

sous-espace vectoriel X de C tel que Im(^) C X (S) E.

Noter que, si D est une sous-cogèbre de C contenant CE, le coproduit dE

applique E dans D (x) E, donc munit E d'une structure de D-comodule\
inversement, tout D-comodule peut évidemment être considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogèbre CE contient E. En effet, CE

est l'image de E (x) E' -> C; d'autre part la restriction de e à E est un élément

eE de E' et l'on vérifie tout de suite que, si x g E, l'image de x (x) eE dans C
est égale à x.

6) Supposons C de rang fini (sur K), et soit A l'algèbre duale
(cf. n° 1.1, Exemple 3). Les sous-cogèbres de C correspondent bijectivement
(par dualité) aux algèbres quotients de A (donc aussi aux idéaux bilatères
de A).

Théorème 1. La cogèbre C est réunion filtrante croissante de ses sous-
cogèbres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogèbre de rang fini. Or, d'après le corollaire à la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogèbre CE associée à E (cf. Exemple 4) répond à la
question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. Dualité entre cogèbres et algèbres profinies

Définition 2. On appelle algèbre profinie une algèbre topologique
séparée, complète., possédant une base de voisinages de 0 formée d'idéaux
bilatères de codimension finie.
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Il revient au même de dire qu'une telle algèbre est limite projective filtrante
d'algèbres de rang fini; d'où le nom de «profini».

Soit maintenant C une cogèbre, et soit A C son dual. La structure de

cogèbre de C définit sur A une structure d'algèbre (cf. Alg. III); d'autre part,
on peut munir A de la topologie de la convergence simple sur C (K étant lui-
même muni de la topologie discrète).

Proposition 1. (a) L'algèbre topologique A C' est une algèbre

profinie. Les idéaux bilatères ouverts de A sont les orthogonaux des sous-
cogèbres de rang fini de C.

(b) Inversementy toute algèbreprofinie qui est associative etpossède un
élément unité est la duale d'une cogèbre possédant une co-unité, définie à

isomorphisme unique près.

Pour prouver (a), on remarque que C lim .X, où X parcourt l'ensemble
ordonné filtrant des sous-cogèbres de C de rang fini (cf. th. 1). On a alors

A \im.Xr et les X' sont des algèbres de rang fini. Le noyau de A X'
est l'orthogonal a* de Xdans A; c'est un idéal bilatère ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.

On a X ^4/a)'; la structure d'algèbre de A/a définit sur X une structure
de cogèbre, et on en déduit que X est une sous-cogèbre de C.

L'assertion (b) est tout aussi évidente.

La correspondance «cogèbres & algèbres profinies» établie ci-dessus se

prolonge en une correspondance «comodules & modules». De façon précise,

soient

Com^ la catégorie des C-comodules à gauche de rang fini,

Mod^ la catégorie des A-modules à gauche de rang fini, dont l'annu-
lateur est ouvert (i.e. qui sont des A -modules topologiques si on les munit de

la topologie discrète).
Si EeCom£, l'application E C (g> E définit par dualité une

application A ® E' -> E\ et l'on voit tout de suite que cette application fait de E'
un A -module à gauche topologique discret.

Proposition 2. Le foncteur E^> E' défini ci-dessus est une équivalence

de la catégorie Comfc sur la catégorie opposée à Mod^.
C'est immédiat.
Noter aussi que, si F est un A -module à gauche de rang fini, F' a une

structure naturelle de ^-module à gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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Corollaire. La catégorie Comfc est isomorphe à la catégorie

Mod fAo.

Remarque. Soit E e Com^; munissons E' (resp. E) de la structure

correspondante de A -module à gauche (resp. à droite). Si x e E, x' e E' et

a, b e A, on a alors les formules:

(1) <dE(x), a®x'> <x,ax'> <xa,x'>
et

(2) <d(E\x), a ® b (g) x'> <x,abx'> <xab,x'>
avec

df (d® h) ° dE (le (8) dE) o dE

2.3. Traductions

Tout résultat sur les modules donne, grâce à la prop. 2 et à son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) Si E e Com^, la sous-cogèbre CE de C attachée à E (cf. n° 2.1) est

la duale de la sous-algèbre de End(i?) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n° 1.4) est la traduction
du fait que A est un A -module projectif (puisque libre de rang 1

c) Une cogèbre est dite simple si elle est ^ 0 et n'admet pas d'autre sous-
cogèbre que 0 et elle-même; c'est alors le dual d'une algèbre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogèbres simples, et

on vérifie alors que l'on peut choisir cette somme de telle sorte qu'elle soit
directe.

On a:

Proposition 3. Pour que Comfc soit une catégorie semi-simple, il
faut et il suffit que C soit semi-simple.

De plus, si c'est le cas, et si Ea est une famille de représentants des classes
de comodules simples sur C, la cogèbre C est somme directe des cogèbres
CEa, qui sont simples.

On a également:

Corollaire. Les conditions suivantes sont équivalentes:

a) C est somme directe de cogèbres de la forme M„(i£).
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b) Conic est semi-simple, et tout objet simple de Comfc est
absolument simple.

C'est trivial à partir du résultat analogue pour les algèbres.

[Noter que ce résultat s'applique notamment à la bigèbre d'un groupe réductif
déployé sur K, lorsque car (K) 0. Mais, bien entendu, il ne donne que la
structure de cogèbre de la bigèbre en question, pas sa structure d'algèbre.]

d) A tout E e Com on peut associer un élément trace 0^ e C de la
manière suivante: E définit un morphisme de cogèbres

End (E)-+C (cf. n° 1.2)

et l'on prend l'image de \E dans C par ce morphisme. En termes d'une
base 0>i) de E, et des c/y e C correspondants (loc. cit.), on a 0£ £ C//.

i

[Voici encore une autre définition: si l'on regarde E comme module sur
l'algèbre C'E duale de CE, on a C'E C End (is), et la forme u h> Tr(w), étant
une forme linéaire sur CE, s'identifie à un élément de CE qui n'est autre
que 0£.]

Proposition 4. Supposons K de caractéristique 0. Soient Ex et

E2 deux comodules de rang fini, et soient 0i, 02 e C les traces correspondantes.

On a 0i 02 si et seulement si les quotients de Jordan-Hölder
de Ex et E2 coïncident (avec leurs mutiplicités).

En effet, le résultat dual (pour les modules de rang fini sur une algèbre)

est bien connu (Alg. VIII).

Corollaire. Si Ex et E2 sont semi-simples, on a 0i 02 si et
seulement si Ex et E2 sont isomorphes.

Remarques

1) On peut aussi donner des résultats lorsque car (K) ^ 0. Par exemple,
si les Ea sont des comodules absolument simples deux à deux non
isomorphes, les 0a correspondants sont linéairement indépendants sur K.

2) Les résultats précédents s'appliquent notamment aux représentations
linéaires d'un schéma en groupes (ou en monoïdes) affine sur K.

2.4. Correspondance entre sous-cogèbres et sous-catégories
de Comfc.

Si D est une sous-cogèbre de C, on a déjà remarqué que tout D-comodule

peut être considéré comme un C-comodule. On obtient ainsi un isomorphisme
de Comp sur une sous-catégorie abélienne D de Com^.
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Théorème 2. L'application D^D est une bijection de l'ensemble

des sous-cogèbres de C sur l'ensemble des sous-catégories L de Com£

vérifiant les conditions suivantes:

1) L est pleine (i.e. si E,F e L, on a HornL(E,F) HomC(F, F)),

2) L est stable par sommes directes finies,

3) Tout objet de Comfc qui est isomorphe à un sous-objet, ou à un

objet quotient, d'un objet de L, appartient à L.

[On se permet d'écrire E e L à la place de E e ob (F).]
Soit 0 l'ensemble des L vérifiant les conditions 1), 2), 3). Si L e 0, il est

clair que L est une catégorie abélienne ayant même sous-objets et mêmes objets

quotients que Com^. On notera C(L) la sous-cogèbre de C somme des

cogèbres CE, pour E e L. Le théorème va résulter des deux formules

suivantes :

a) C(D) D pour toute sous-cogèbre D de C;

b) C(L) L pour toute L e 0.
La première de ces deux formules est triviale: elle revient à dire que D est

réunion des sous-cogèbres CE, lorsque E parcourt l'ensemble des

F-comodules de rang fini, ce qui a été prouvé au n° 2.1. Pour la seconde, il
suffit de prouver ceci:

Lemme 1. Soit E un comodule de rang fini, soit CE C C la cogèbre
correspondante, et soit F un CE-comodule (considéré comme C-comodule)
de rang fini. Il existe alors un entier n ^ 0 tel que F soit isomorphe à un
sous-comodule d'un quotient de En.

Par dualité, cela revient à dire que, si B est une algèbre de rang fini, et
E un F-module fidèle, tout F-module de type fini F est isomorphe à un
quotient d'un sous-module d'un En. Or F est isomorphe à un quotient d'un
module libre Bq, et l'on est ramené à prouver que Bq est isomorphe à un
sous-module d'un En\ il suffit d'ailleurs de le faire pour q 1. Mais c'est
clair: si E est engendré par xx, xn, l'application b (bxx, bxn) est une
injection de B dans En, puisque E est fidèle. D'où le lemme, et, avec lui, le
théorème.

Remarques

1) Le lecteur peut à volonté interpréter Com£ comme une petite
catégorie (relative à un univers fixé, par exemple), ou une grosse. Le
th. 2 est correct dans l'une ou l'autre interprétation.
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2) Il n'est pas indispensable de passer aux modules pour prouver le

lemme 1. On remarque d'abord (cf. n° 1.4, Exemple 2) que Fest isomorphe
à un sous-comodule de (x) F, i.e. de (CE)n, avec n rang(F). D'autre
part, CE est isomorphe, comme comodule, à un quotient de F(x)F',
c'est-à-dire de Fm, où m rang (F). D'où le résultat.

Exemples

1) La sous-catégorie de Com£ formée des objets semi-simples correspond

à la plus grande sous-cogèbre semi-simple de C (la somme de toutes les

sous-cogèbres simples).

2) Supposons C semi-simple, et soit (F/)/e/ un ensemble de

représentants des classes de C-comodules simples. Posons C, CE., de sorte

que C est somme directe des cogèbres simples C/. Si J est une partie
de /, Cj Yé Ci est une sous-cogèbre de C, et toute sous-cogèbre de C

/ e J
s'obtient de cette manière, et de façon unique. La sous-catégorie correspondant
à Cj est formée des comodules isomorphes à des sommes directes finies
des Ej J e J.

2.5. OÙ L'ON CARACTÉRISE Comfc

Soit M une catégorie abélienne munie des deux structures suivantes :

a) M est une catégorie sur F; cela signifie que, si F, F sont des objets de

M, HomM(F, F) est muni d'une structure de F-espace vectoriel, la composition

des morphismes étant bilinéaire.

b) On se donne un foncteur v : M -* Vect^ de M dans la catégorie des

F-espaces vectoriels de dimension finie.

On fait les hypothèses suivantes:

(i) Le foncteur u est K-linéairey i.e. pour tout F, F e M, l'application
u: HomM(E,F) Hom(i>(F), v(Fj) est F-linéaire.

(ii) Le foncteur v est exact et fidèle.

Théorème 3. Sous les hypothèses ci-dessus, il existe une cogèbre C

sur F (et une seule, à isomorphisme près) telle que M soit équivalente à

Comfc, cette équivalence transformant le foncteur u en le foncteur
C-module espace vectoriel sous-jacent.

[Ici, il est nécessaire d'interpréter M comme une petite catégorie, ou en tout
cas de supposer qu'il existe un ensemble de représentants pour les classes

d'isomorphisme d'objets de M.]
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Avant de commencer la démonstration, remarquons que les hypothèses (i)

et (ii) entraînent que HomM(Is, F) est un espace vectoriel de dimension finie
pour tout E, F e M. De plus, un sous-objet d'un objet E de M est connu

lorsqu'on connaît le sous-espace vectoriel correspondant de u(E); l'ensemble
des sous-objets de E s'identifie ainsi à un sous-ensemble réticulé de l'ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On

a des résultats analogues pour les objets quotients.
D'autre part, si E e M, nous noterons ME la sous-catégorie pleine de M

formée des quotients F/ G, où F est isomorphe à un sous-objet d'un
En (n entier > 0 quelconque).

Enfin, si E est un objet de M, et si X est une partie de V(E), nous dirons

que X engendre E si tout sous-objet F de E tel que v{F) D X est égal à E.

Démonstration du théorème 3

a) Le cas fini; une majoration.

C'est celui où il existe un objet E de M tel que ME M. Soit n rangKu(E).

Lemme 2. Soit F un objet de M pouvant être engendré par un
élément (cf. ci-dessus). On a

rangKu(F) < n2

Par hypothèse, on peut écrire F comme quotient Fx/F2i où Fx est

isomorphe à un sous-objet d'un Em, pour m convenable. Soit x e u(F)
engendrant F et soit xx un élément de d(Fx) dont l'image dans u(F) est x.
Soit G le plus petit sous-objet de Em tel que u(G) contienne xx. On a G C Fx

et l'image de G dans F Fx/F2 est égale à F. Il suffit donc de prouver que
rang*y(G) ^ n2. Si m ^ n, c'est évident. Supposons donc que m > n. On a

xx e u(G) C u(Em) u(E)m. Soient yu les composantes de Xi,
considéré comme élément de u(E)m. Puisque m > n, il existe des at e K, non
tous nuls, tels que P a^i 0. Or les at définissent un morphisme surjectif
Em -> E; si N est le noyau de ce morphisme, on a N - Em~l, comme on le
voit facilement. D'autre part, on a xx e u(N), d'où G C N puisque xx
engendre G. On a donc obtenu un plongement de G dans Em~1 ; d'où le
lemme, en raisonnant par récurrence sur m.

b) Le cas fini; construction d'un générateur projectif
Les hypothèses étant les mêmes que ci-dessus, on choisit un objet P de M

pouvant être engendré par un élément x u(P), et tel que u(P) soit de rang
maximum parmi ceux jouissant de cette propriété. C'est possible en vertu du
Lemme 2.
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Lemme 3. (i) Le couple (P, x) représente le foncteur u.

(ii) P est un générateur projectif de M.

Il suffit de prouver (i); l'assertion (ii) en résultera, puisque le foncteur v

est exact et fidèle.

Soient donc F e M, et y e v(F). Il nous faut prouver l'existence et l'unicité
d'un morphisme / : P -> F transformant x en y. L'unicité provient de ce

que x engendre P. Pour démontrer l'existence, soit Q le plus petit sous-objet
de P x F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pri
est surjectif, du fait que P est engendré par x. On a donc

rangKv(Q) ^ rangKv(P) ;

mais le caractère maximal de u(P) entraîne qu'il y a égalité; le morphisme
Q P est donc un isomorphisme. En composant son inverse avec la seconde

projection Q - P, on obtient un morphisme / ayant la propriété voulue.

c) Le cas fini; fin de démonstration.

Soit A l'algèbre des endomorphismes de P. C'est une P-algèbre de

dimension finie. Le lemme suivant est bien connu:

Lemme 4. Il existe un foncteur (p: Mod^o M et un seul (à isomorphisme

près) qui soit exact à gauche et transforme A (considéré comme
A -module à droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons brièvement la démonstration. Pour chaque A -module à droite

H de rang fini, on choisit une présentation finie de H:

AP A* -> H-+ 0

où a est une p x q-matrice à coefficients dans A. Cette matrice définit un
morphisme Pp -> Pq et l'on prend pour cp(if) le conoyau de ce morphisme.
On prolonge de façon évidente (p en un foncteur Mod^o -Met l'on vérifie

qu'il a la propriété voulue. On note généralement ce foncteur H h» H (x)A P.

C'est un adjoint du foncteur HomM(P, F). Son unicité est immédiate.

Le fait que ce soit une équivalence résulte de ce que P est un générateur

projectif de M.
De plus, l'équivalence cp :H^H®AP transforme le foncteur «espace

vectoriel sous-jacent à un A -module» en un foncteur isomorphe à v (en effet
le premier foncteur est représentable par A, le second par P, et (p transforme
A en P). On peut donc prendre pour cogèbre la cogèbre duale de l'algèbre A,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe E e M avec

N Me- L'ensemble X est ordonné filtrant puisque ME{xe2 contient MEï et

MEl. Si N e X, soit comme ci-dessus (PNixN) un couple représentant la

restriction à TV du foncteur v, et soit AN End(PAr). Si Ni D N2, il existe un

unique morphisme Pn2 transformant xEfl en Xm2\ °n v°it aisément que

ce morphisme identifie PNl au plus grand quotient de PNl appartenant ä N2.

En particulier, tout endomorphisme de PN{ définit par passage au quotient

un endomorphisme de PNl. D'où un homomorphisme ANl->AN2 qui est

surjectif. Si A désigne l'algèbre profinie limite projective des AN, pour
N e X, il est alors clair que la cogèbre duale de A répond à la question.

Quant à Vunicité de cette cogèbre (ou de l'algèbre A), elle provient de la

remarque suivante: A est isomorphe à l'algèbre des endomorphismes du

foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas

M Me, en utilisant le théorème de Grothendieck disant qu'un foncteur
exact à droite est proreprésentable: on appliquerait ce théorème à u, d'où
P e Pro M représentant u et on obtiendrait A comme l'algèbre des

endomorphismes de P.

§3. Bigèbres

3.1. Définitions et conventions

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un AT-module C muni
d'une structure de cogèbre d:C C ® C et d'une structure d'algèbre
m : C (x) C -> C, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit C (x) C de la structure d'algèbre produit tensoriel de celle
de C par elle-même, d est un homomorphisme d'algèbres de C dans C (x) C.

Cet axiome équivaut d'ailleurs à:

(i') L'application m : C (x) C - C est un morphisme de cogèbres (pour la
structure naturelle de cogèbre de C (x) C).

Dans tout ce qui suit, nous réserverons le terme de bigèbres à celles vérifiant
les conditions suivantes:

(ii) La cogèbre (C, d) possède une co-unité e :C -> K.

(iii) L'algèbre (C, m) est commutative, associative, et possède un élément
unité 1.
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