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D’autre part, I’axiome (2) de la déf. 1 montre que V° est contenu dans
(e ® 1p) (C® V), donc dans V. Enfin, il est clair que tout sous-comodule
de E contenu dans V est contenu dans V°, cqfd.

Nous dirons qu’un comodule est de type fini (resp. libre, projectif, ...) si
c’est un K-module de type fini (resp. un K-module libre, un K-module
projectif, ...).

COROLLAIRE. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
de(W) est un sous-module de type fini de C ® E. On peut donc trouver un
sous-module V de type fini de E tel que C ® V contienne dg(W). Soit V°
I’ensemble des x € E tels que de(x) € C&® V. D’aprés la proposition, V¢ est
un sous-comodule de E contenu dans V, donc de type fini (puique K est
noethérien). Il est clair que V° contient W, cqfd.

§2. COGEBRES SUR UN CORPS
A partir de maintenant, ’anneau de base K est un corps.

2.1. SOUS-COGEBRES

Soit C une cogebre sur K, de coproduit d et de co-unité e.
DEFINITION 1. Un sous-espace vectoriel X de C est appelé une sous-
cogébre de C si d(X) est contenu dans X @ X.

S’il en est ainsi, ’application linéaire dyx: X — X ® X induite par d
munit X d’une structure de cogébre, ayant pour co-unité la restriction
de e a X.

Exemples

1) Si (X;);cs est une famille de sous-cogebres de C, la somme des X; et
I’intersection des X; sont des sous-cogebres de C. Cela se vérifie au moyen
des formules:

Y Xi®X) C (Y X)® (Y X)
NX®X) =(NX)®(N X)) .
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2) Une sous-cogébre de rang 1 (sur K) de C a pour base un ¢élément non
nul x tel que d(x) = x ® x; on a alors e(x) = 1.

3) Si D est une cogébre, et si f: D — C est un morphisme de cogebres,
f(D) est une sous-cogebre de C.

4) Soit E un comodule sur C, soit (v;);; une base de E, et soient ¢;; € C
tels que dg(v;) = E ¢ ®v;, cf. n° 1.2, Remarque 3. Il résulte de la
formule (1’) du n° 1.2 que le sous-espace vectoriel Cg engendré par les c;; est
une sous-cogébre de C. Cette sous-cogébre ne dépend pas du choix de la
base (v;), car c’est I’image de l’application E ® E’— C associée a dg
(cf. n° 1.2, Remarque 2). On peut aussi caractériser Cr comme le plus petit
sous-espace vectoriel X de C tel que Im(dz) C X ® E.

Noter que, si D est une sous-cogébre de C contenant Cg, le coproduit dg
applique E dans D ® E, donc munit £ d’une structure de D-comodule;
inversement, tout D-comodule peut évidemment €tre considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogebre Cg contient E. En effet, Cg
est I’'image de £ ® E’ — C,; d’autre part la restriction de e a E est un élément
er de E’ et ’on vérifie tout de suite que, si x € E, 'image de x ® ez dans C
est égale a x.

6) Supposons C de rang fini (sur K), et soit A I’algébre duale
(cf. n°® 1.1, Exemple 3). Les sous-cogebres de C correspondent bijectivement

(par dualité) aux algébres quotients de A (donc aussi aux idéaux bilatéres
de A). '

THEOREME 1. La cogebre C est réunion filtrante croissante de ses sous-
cogebres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogebre de rang fini. Or, d’aprés le corollaire a la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogébre Cr associée a E (cf. Exemple 4) répond a la

question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. DUALITE ENTRE COGEBRES ET ALGEBRES PROFINIES

DEFINITION 2. On appelle algébre profinie une algébre topologique
séparée, compléte, possédant une base de voisinages de 0 formée d’idéaux
bilatéres de codimension finie.
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Il revient au méme de dire qu’une telle algébre est limite projective filtrante
d’algébres de rang fini; d’ou le nom de «profini».

Soit maintenant C une cogébre, et soit A = C’ son dual. La structure de
cogebre de C définit sur A une structure d’algebre (cf. Alg. 1II); d’autre part,
on peut munir 4 de la topologie de la convergence simple sur C (K étant lui-
méme muni de la topologie discréte).

PROPOSITION 1. (a) L’algebre topologique A = C’ est une algébre
profinie. Les idéaux bilatéres ouverts de A sont les orthogonaux des sous-
cogebres de rang fini de C.

(b) Inversement, toute algebre profinie qui est associative et possede un élé-
ment unité est la duale d’une cogeébre possédant une co-unité, définie a
isomorphisme unique pres.

Pour prouver (a), on remarque que C = li_I)n . X, ou X parcourt ’ensemble
ordonné filtrant des sous-cogébres de C de rang fini (cf. th. 1). On a alors
A = li(Ln.X " et les X’ sont des algébres de rang fini. Le noyau de 4 - X"’
est I’orthogonal ay de X dans A4; c’est un idéal bilatére ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.
On a X = (A/a)"; la structure d’algebre de A/a définit sur X une structure
de cogébre, et on en déduit que X est une sous-cogebre de C.

L’assertion (b) est tout aussi évidente.

La correspondance «cogébres < algébres profinies» établie ci-dessus se
prolonge en une correspondance «comodules ¢ modules». De facon précise,
soient

Comf; la catégorie des C-comodules a gauche de rang fini,

Modf1 la catégorie des A-modules a gauche de rang fini, dont I’annu-
lateur est ouvert (i.e. qui sont des A-modules topologiques si on les munit de
la topologie discréte).

Si Ee Comfc, I’application E — C ® E définit par dualité une appli-
cation A ® E’' — E’, et I’on voit tout de suite que cette application fait de E’
un A-module a gauche topologique discret.

PROPOSITION 2. Le foncteur E— E’ défini ci-dessus est une équiva-
lence de la catégorie Com’; sur la catégorie opposée a Mod{;.

C’est immédiat.

Noter aussi que, si F est un A-module a gauche de rang fini, F’ a une
structure naturelle de A°-module a gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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COROLLAIRE. La catégorie Com{: est isomorphe a la catégorie
MOd{qO .

Remarque. Soit E € Com’é; munissons E’ (resp. E) de la structure
correspondante de 4-module & gauche (resp. a droite). Si x € E, x" € E’ et
a,b e A, on a alors les formules:

(D <dg(®¥), a®x'> = <x,ax'> = <xa,x">

et

) <dPX), a® bR x> = <x,abx’> = <xab,x’ >,
avec

dP = ([d® 1g) 0 dg = (lc ® dg) © dg .

2.3. TRADUCTIONS

Tout résultat sur les modules donne, grace a la prop. 2 et a son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) SiEe Com{;, la sous-cogeébre Cr de C attachée a E (cf. n° 2.1) est

la duale de la sous-algebre de End(FE) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n°® 1.4) est la traduction
du fait que A est un A-module projectif (puisque libre de rang 1!).

c) Une cogebre est dite simple si elle est # 0 et n’admet pas d’autre sous-
cogebre que O et elle-méme; c’est alors le dual d’une algébre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogébres simples, et

on verifie alors que ’on peut choisir cette somme de telle sorte qu’elle soit
directe.

On a:

PROPOSITION 3. Pour que Com’é soit une catégorie semi-simple, il
Jaut et il suffit que C soit semi-simple.

De plus, si c’est le cas, et si E, est une famille de représentants des classes

de comodules simples sur C, la cogébre C est somme directe des cogebres
Cg,, qui sont simples.

On a également:

COROLLAIRE. Les conditions suivantes sont éguivalentes:

a) C est somme directe de cogébres de la forme M, (K).
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b) Comé est semi-simple, et tout objet simple de Comf; est abso-
lument simple.

C’est trivial a partir du résultat analogue pour les algébres.

[Noter que ce résultat s’applique notamment a la bigébre d’un groupe réductif
déployé sur K, lorsque car(K) = 0. Mais, bien entendu, il ne donne que la

structure de cogeébre de la bigébre en question, pas sa structure d’algebre.]

d) A tout E e Com’; on peut associer un élément frace 6 € C de la
maniere suivante: E définit un morphisme de cogébres

End(E) — C (cf. n° 1.2)

et ’'on prend I'image de 1z dans C par ce morphisme. En termes d’une
base (v;) de E, et des ¢; € C correspondants (loc. cit.), on a 6y = E Cii.

i
[Voici encore une autre définition: si I’on regarde E comme module sur
Palgebre Cj duale de Cg, on a Cy C End(E), et la forme u — Tr(u), étant
une forme linéaire sur Cg, s’identifie & un élément de Cr qui n’est autre
que 9z.]

PROPOSITION 4. Supposons K de caractéristique 0. Soient E; et
E, deux comodules de rang fini, et soient 6,,0, € C les traces correspon-
dantes. On a 0, = 0, si et seulement si les quotients de Jordan-Holder
de E, et E, coincident (avec leurs mutiplicités).

En effet, le résultat dual (pour les modules de rang fini sur une algebre)
est bien connu (Alg. VIII).

COROLLAIRE. Si E;, et E, sont semi-simples, on a 0, =0, si et
seulement si E, et E, sont isomorphes.

Remarques

1) On peut aussi donner des résultats lorsque car(K) # 0. Par exemple,
si les E, sont des comodules absolument simples deux a deux non iso-
morphes, les 8, correspondants sont linéairement indépendants sur K.

2) Les résultats précédents s’appliquent notamment aux représentations
linéaires d’un schéma en groupes (ou en monoides) affine sur K.

2.4. CORRESPONDANCE ENTRE SOUS-COGEBRES ET SOUS-CATEGORIES
DE Com.

Si D est une sous-cogebre de C, on a déja remarqué que tout D-comodule
peut étre considéré comme un C-comodule. On obtient ainsi un isomorphisme
de Com? sur une sous-catégorie abélienne D de ComZ..
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THEOREME 2. L’application D~ D est une bijection de l’ensemble
des sous-cogébres de C sur ’ensemble des sous-catégories L de Com”.
vérifiant les conditions suivantes:

1) L est pleine (i.e.si E,Fe L, ona Hom(E,F) = HomC(E, F)),
2) L est stable par sommes directes finies,

3) Tout objet de Com{j qui est isomorphe @ un sous-objet, ou a un
objet quotient, d’un objet de L, appartient a L.

[On se permet d’écrire E € L a la place de £ € ob(L).]

Soit ® ’ensemble des L vérifiant les conditions 1), 2), 3). Si L € ©, il est
clair que L est une catégorie abélienne ayant méme sous-objets et mémes objets
quotients que Com{;. On notera C(L) la sous-cogébre de C somme des
cogébres Cg, pour E € L. Le théoréme va résulter des deux formules
suivantes:

a) C(ﬁ) = D pour toute sous-cogébre D de C;
b) C(L) = L pour toute L € ©.

La premiére de ces deux formules est triviale: elle revient a dire que D est
réunion des sous-cogébres Cg, lorsque E parcourt I’ensemble (!) des
D-comodules de rang fini, ce qui a été prouvé au n° 2.1. Pour la seconde, il
suffit de prouver ceci:

LEMME 1. Soit E un comodule de rang fini, soit Cg C C la cogébre
correspondante, et soit F un Cg-comodule (considéré comme C-comodule)
de rang fini. 1l existe alors un entier n >0 tel que F soit isomorphe a un
sous-comodule d’un 'quotient de E",

Par dualité, cela revient a dire que, si B est une algebre de rang fini, et
E un B-module fidele, tout B-module de type fini F est isomorphe & un
quotient d’un sous-module d’un E”. Or F est isomorphe 4 un quotient d’un
module libre B?, et I’on est ramené a prouver que B9 est isomorphe a un
sous-module d’un E7”; il suffit d’ailleurs de le faire pour ¢ = 1. Mais c’est
clair: si E est engendré par xi, ..., x,, I’application b = (bx, ..., bx,) est une
injection de B dans E", puisque E est fidéle. D’ou le lemme, et, avec lui, le
théoréme.

Remarques

1) Le lecteur peut a volonté interpréter Com’é comme une petite
catégorie (relative a un univers fixé, par exemple), ou une grosse. Le
th. 2 est correct dans ’une ou ’autre interprétation.
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2) 11 n’est pas indispensable de passer aux modules pour prouver le
lemme 1. On remarque d’abord (cf. n° 1.4, Exemple 2) que F est isomorphe
a un sous-comodule de Cx ® F, i.e. de (Cg)", avec n = rang(F). D’autre
part, Cg est isomorphe, comme comodule, & un quotient de E® E’,
c’est-a-dire de E™, ou m = rang(E). D’ou le résultat.

Exemples

1) La sous-catégorie de Com’é formée des objets semi-simples corres-
pond a la plus grande sous-cogebre semi-simple de C (la somme de toutes les
sous-cogebres simples).

2) Supposons C semi-simple, et soit (E;);c; un ensemble de repré-
sentants des classes de C-comodules simples. Posons C; = Cg,, de sorte
que C est somme directe des cogébres simples C;. Si J est une partie
de I, C; = Z C; est une sous-cogebre de C, et toute sous-cogébre de C
s’obtient de égt{e maniere, et de facon unique. La sous-catégorie correspondant
a C; est formée des comodules isomorphes a des sommes directes finies
des E;,i € J.

2.5. OU L’ON CARACTERISE Com%,

Soit M une catégorie abélienne munie des deux structures suivantes:

a) M est une catégorie sur K; cela signifie que, si E, F sont des objets de
M, HomM(E, F) est muni d’une structure de K-espace vectoriel, la compo-
sition des morphismes étant bilinéaire.

b) On se donne un foncteur v: M — Vectﬁ de M dans la catégorie des
K-espaces vectoriels de dimension finie.

On fait les Aypothéses suivantes:

(1) Le foncteur v est K-linéaire, i.e. pour tout E, F € M, I’application
v: Hom™(E, F) = Hom (v(E), v(F)) est K-linéaire.

(i) Le foncteur v est exact et fidéle.

THEOREME 3. Sous les hypotheses cz"-dessus, il existe une cogébre C
sur K (et une seule, a isomorphisme pres) telle que M soit équivalente a
Com{;, cette équivalence transformant le foncteur v en le foncteur
C-module — espace vectoriel sous-jacent.

[Ici, il est nécessaire d’interpréter M comme une petite catégorie, ou en tout
cas de supposer qu’il existe un ensemble de représentants pour les classes
d’isomorphisme d’objets de M.]




GEBRES 49

Avant de commencer la démonstration, remarquons que les hypothéses (i)
et (ii) entrainent que Hom™(E, F) est un espace vectoriel de dimension finie
pour tout £, F € M. De plus, un sous-objet d’un objet £ de M est connu
lorsqu’on connait le sous-espace vectoriel correspondant de v(£); ’ensemble
des sous-objets de E s’identifie ainsi & un sous-ensemble réticulé de I’ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On
a des résultats analogues pour les objets quotients.

D’autre part, si £ € M, nous noterons My la sous-catégorie pleine de M
formée des quotients F/G, ou F est isomorphe a un sous-objet d’un
E" (n entier > 0 quelconque).

Enfin, si £ est un objet de M, et si X est une partie de ¥V(£), nous dirons
que X engendre E si tout sous-objet F de £ tel que v(F) O X est égal a E.

Démonstration du théoréme 3
a) Le cas fini; une majoration.

C’est celui ou il existe un objet £ de M tel que My = M. Soit n = rangg v(E).

LEMME 2. Soit F  un objet de M pouvant étre engendré par un
élément (cf. ci-dessus). On a

rangx V(F) < n?.

Par hypotheése, on peut écrire F comme quotient F,/F,, ou F; est
isomorphe & un sous-objet d’un E™, pour m convenable. Soit x € v(F)
engendrant F et soit x; un élément de v(F,) dont I’image dans v(F) est x.
Soit G le plus petit sous-objet de E™ tel que v(G) contienne x,. On a G C F,
et 'image de G dans F = Fy/F; est égale & F. 1l suffit donc de prouver que
rangx v(G) < n*. Si m < n, c’est évident. Supposons done que m > n. On a
xy € v(G) Cu(E™) = v(E)™. Soient yi,...,¥, les composantes de x,
considéré comme élément de v(E)™. Puisque m > n, il existe des @; € K, non
tous nuls, tels que ¥ a;y; = 0. Or les 4; définissent un morphisme surjectif
Em™— Ej si N est le noyau de ce morphisme, on a N = E”-!, comme on le
voit facilement. D’autre part, on a x; € v(N), d’ot GC N puisque x;
engendre G. On a donc obtenu un plongement de G dans Em-1. d’ou le
lemme, en raisonnant par récurrence sur 1.

b) Le cas fini; construction d’un générateur projectif.

Les hypothéeses étant les mémes que ci-dessus, on choisit un objet P de M
pouvant étre engendré par un élément x € v(P), et tel que v(P) soit de rang

maximum parmi ceux jouissant de cette propriété. C’est possible en vertu du
Lemme 2.
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LEMME 3. (i) Le couple (P,x) représente le foncteur v.
(i) P est un générateur projectif de M.

Il suffit de prouver (i); ’assertion (i) en résultera, puisque le foncteur v
est exact et fidéle.

Soient donc F € M, et y € v(F). Il nous faut prouver 1’existence et I’unicité
d’un morphisme f:P — F transformant x en y. L’unicité provient de ce
que x engendre P. Pour démontrer Pexistence, soit Q le plus petit sous-objet
de P X F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pr;
est surjectif, du fait que P est engendré par x. On a donc

rangg V(Q) = rangg V(P) ;

mais le caractére maximal de v(P) entraine qu’il y a égalité; le morphisme
Q — P est donc un isomorphisme. En composant son inverse avec la seconde
projection Q — F, on obtient un morphisme f ayant la propriété voulue.

¢) Le cas fini; fin de démonstration.

Soit A D’algébre des endomorphismes de P. C’est une K-algébre de
dimension finie. Le lemme suivant est bien connu:

LEMME 4. 1l existe un foncteur @: MOd{;o — M et un seul (a isomor-
phisme prés) qui soit exact a gauche et transforme A (considéré comme
A-module a droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons briévement la démonstration. Pour chaque A-module & droite
H de rang fini, on choisit une présentation finie de H:

AP—%AQ—)H-—-)()

ou o est une p X g-matrice a coefficients dans 4. Cette matrice définit un
morphisme P? — P9 et ’on prend pour ¢ (H) le conoyau de ce morphisme.
On prolonge de facon évidente ¢ en un foncteur Mod{;o — M et I’on vérifie
qu’il a la propriété voulue. On note généralement ce foncteur H— H & 4 P.
C’est un adjoint du foncteur F— HomM (P, F). Son unicité est immédiate.
Le fait que ce soit une équivalence résulte de ce que P est un générateur
projectif de M.

De plus, I’équivalence ¢: H— H @ 4 P transforme le foncteur «espace
vectoriel sous-jacent & un A-module» en un foncteur isomorphe a v (en effet
le premier foncteur est représentable par A, le second par P, et ¢ transforme
A en P). On peut donc prendre pour cogebre la cogebre duale de I’algebre A4,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X ’ensemble des sous-catégories N de M telles qu’il existe E € M avec
N = My. L’ensemble X est ordonné filtrant puisque Mg, « g, contient Mg, et
Mg,. Si N € X, soit comme ci-dessus (Py, xy) un couple représentant la
restriction 4 N du foncteur v, et soit Ay = End(Py). Si Ny D N,, il existe un
unique morphisme Py, = Py, transformant xy, en xy,; on voit aisément que
ce morphisme identifie Py, au plus grand quotient de Py, appartenant a N,.
En particulier, tout endomorphisme de Py, définit par passage au quotient
un endomorphisme de Py,. D’oi un homomorphisme Ay, = Ay, qui est
surjectif. Si A désigne I’algébre profinie limite projective des Ay, pour
N € X, il est alors clair que la cogébre duale de A répond a la question.

Quant a Punicité de cette cogébre (ou de 1’algébre A), elle provient de la
remarque suivante: A est isomorphe a [’algébre des endomorphismes du
foncteur v, munie de la topologie de la convergence simple.

Remarque. 1l est probablement possible d’éviter le passage par le cas
M = Mg, en utilisant le théoréme de Grothendieck disant qu’un foncteur
exact a droite est proreprésentable: on appliquerait ce théoreme a v, d’ou
P € Pro M représentant v et on obtiendrait 4 comme 1’algébre des endo-
morphismes de P.

§3. BIGEBRES

3.1. DEFINITIONS ET CONVENTIONS

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu’une bigébre sur K est un K-module C muni
d’une structure de cogebre d:C—> C&® C et d’une structure d’algébre
m:C & C— C, ces structures vérifiant I’axiome suivant:

(i) Sil’on munit C ® C de la structure d’algébre produit tensoriel de celle
de C par elle-m€me, d est un homomorphisme d’algébres de C dans C R C.

Cet axiome équivaut d’ailleurs a:

(i") L’application m: C @ C — C est un morphisme de cogébres (pour la
structure naturelle de cogebre de C Q C).

Dans tout ce qui suit, nous réserverons le terme de bigébres a celles vérifiant
les conditions suivantes:

(i) La cogebre (C, d) posséde une co-unité e: C — K.

(i) L’algebre (C, m) est commutative, associative, et posséde un élément
unité 1.
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