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GÈBRES 39

1.3. Une formule d'adjonction

On conserve les notations précédentes. Soit V un iCmodule; d'après le

n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur C (x) V,

le coproduit correspondant étant d ® \v>

Soit d'autre part E un comodule. Définissons une application linéaire

0 : HomCE, V) -> Hom C(E, C (x) V)
par

0(g) de 0 g) o dE si g g Hom (E, V)

Cela a un sens, car dE est un morphisme de E dans C 0 E, et lc ® g est un
morphisme de C (g) E dans C (x) V.

Proposition 1. L'application 0: Horn (is, V) - Homc(E, C (x) F) est
un isomorphisme.

Soit f:E-+C®V un morphisme. En composant / avec e (x) lv:
C (g) V-> V, on obtient un élément s(/) de Hom(is, V). On a ainsi défini une
application linéaire

s: Hornc(is, C 0 V) Hom(£, V)

et il suffit de prouver que 0 et s sont inverses l'un de l'autre. Tout d'abord,
si g e Hom(E, V), on a:

e(0(g)) (e ® If) ° 0(g) (e (x) iv) o (lc ® g) o dE

(e (g) g) o dE g o (e ® 1E) q dE

g ° Ie g

ce qui montre bien que e o 0 i.
D'autre part, si f eHom C(E,C®F), on a:

6(e(/)) (le 0 s(/)) o dE=(lc 0 ((e 0 1K) o /)) o dE

(le ® e ® If) ° (le ® f) ° dE

(le ® e ® If) ° (d (x) \v) o f
(((le ® e) o d) (g) lv) o /
(le ® If) ° / /

ce qui montre bien que 0 o s 1, cqfd.
[Ce qui précède est un bon exemple d'un principe général: tout calcul relatif
aux cogèbres est trivial et incompréhensible.]
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Exemples

1) Prenons V - E et g 1E; l'élément correspondant de Homc(E,C(g)E)
est le coproduit dE\ E -> C (x) E.

2) Prenons F K. On obtient une bijection 0: E' Homc(E, C). La
bijection réciproque associe à tout morphisme f:E-*C la forme linéaire
e ° /.

1.4. Conséquences d'une hypothèse de platitude

A partir de maintenant, on suppose que C est plat (comme AT-module). Si

F est un sous-module d'un module W, on identifie C (g) F au sous-module

correspondant de C (g) FF, et C (x) (IF/ F) à (C (x) fF)/(C (g) F).

Définition 3. SojY E un C-comodule, et soit V un sous-module
de E. On dit que V est stable par C (ou que c'est un sous-comodule
de E) si dE applique V dans C (x) F.

Si tel est le cas, on vérifie tout de suite que l'application dv'. F C (x) F
induite par dE fait de F un comodule (d'où la terminologie); on définit de

même le comodule quotient E/V.

Exemples

1) Soit (F,-)/ eI une famille de sous-modules du comodule E. Si les F,

sont stables par C, il en est de même de £ Vt (resp. de n V lorsque / est
i e I i e I

fini). Cela résulte des formules:

C0(£ V,) S (C® K,)
el c ® (O F,) n (C ® K,) / fini

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dE:E -> C ® E identifie E à un

sous-comodule de C (x) E (muni du coproduit d (x) \E, cf. n° 1.3). On notera

que ce sous-comodule est même facteur direct dans C (g) E comme ^-module
(mais pas en général comme comodule), en vertu de la formule (2) de la

définition 1.

Proposition 2. Soit f:Ei~+E2 un morphisme de comodules. Alors
Ker(/) et Im (/) sont stables par C; déplus, f définit par passage

au quotient un isomorphisme du comodule £i/Ker(/) sur le comodule

Im (/).
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