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GEBRES 39

1.3. UNE FORMULE D’ADJONCTION

On conserve les notations précédentes. Soit ¥ un K-module; d’aprés le
n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur CQ V,

le coproduit correspondant étant d Q 1.
Soit d’autre part £ un comodule. Définissons une application linéaire

6: Hom(E, V) > Hom¢(F, CQ V)
par
6@ =(0c®gode, si geHom(EV).

Cela a un sens, car dg est un morphisme de £ dans C® E, et 10 ® g est un
morphisme de C&® E dans C & V.

PROPOSITION 1. L’application 6:Hom(E, V) - HomC(E,C ® V) est
un isomorphisme.

Soit f:E—- C® V un morphisme. En composant f avec e ® 1y:
C ® V — V, on obtient un élément €(f) de Hom(E, V). On a ainsi défini une
application linéaire

e: Hom®(E,C ® V) - Hom(E, V)
et il suffit de prouver que 6 et € sont inverses ’un de 1’autre. Tout d’abord,
si g €e Hom(E, V), on a:
e(0(@) =(€®1) o0 =1y o(Ic®go
=e®godg=go(e® lg)odg
=golg=g,

ce qui montre bien que £ 0 § = 1.
D’autre part, si f € HomC(E,C ® V), on a:

0(e(f) =Uc®e(N))odr=(1c® (e® 1y) © f)) 0 ds
=(1c®e®1y)o(1c® f) o dg
=(lc®e@1ly)o@d®1y)o f
=(1c®eod)®1y) o f
=lc®1ly)o f=71f,

ce qui montre bien que 6 o € = 1, cqfd.

[Ce qui précede est un bon exemple d’un principe général: tout calcul relatif
aux cogebres est trivial et incompréhensible.]
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Exemples

1) Prenons V =FE et g = 1g; I’élément correspondant de Hom€(E,C ® E)
est le coproduit dg: E—> C® E.

2) Prenons V = K. On obtient une bijection 0: E' = HomC¢(E, C). La
bijection réciproque associe a tout morphisme f:E — C la forme linéaire

eo f.

1.4. CONSEQUENCES D’UNE HYPOTHESE DE PLATITUDE

A partir de maintenant, on suppose que C est plat (comme K-module). Si
V est un sous-module d’un module W, on identifie C & V au sous-module
correspondant de CR W, et CQ (W/V)a (CQR® W)/ (CR V).

DEFINITION 3. Soit E un C-comodule, et soit V un sous-module

de E. On dit que V est stable par C (ou que c’est un sous-comodule
de E) si dr appliqgue V dans CQ V.

Si tel est le cas, on vérifie tout de suite que Papplication dy: V>C X V
induite par dg fait de ¥V un comodule (d’ou la terminologie); on définit de
méme le comodule quotient E/ V.

Exemples

1) Soit (V;);; une famille de sous-modules du comodule E. Si les V;
sont stables par C, il en est de méme de E V; (resp. de M V; lorsque I est

iel iel
fini). Cela résulte des formules:
CRLV)I=L(CRV)

. CR®NV)=N(C®V), I fini,

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dg: E = C Q E identifie E a un
sous-comodule de C Q E (muni du coproduit d ® 1g, cf. n° 1.3). On notera
que ce sous-comodule est méme facteur direct dans C @ E comme K-module
(mais pas en général comme comodule), en vertu de la formule (2) de la
définition 1.

PROPOSITION 2. Soit f:E, — E, un morphisme de comodules. Alors
Ker(f) et Im(f) sont stables par C,; de plus, f définit par passage
au quotient un isomorphisme du comodule E;/Ker(f) sur le comodule

Im(f).
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