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36 J.-P. SERRE

On note A\gK la catégorie des anneaux commutatifs K\ munis d'un
morphisme K-* K\.

L'application identique d'un ensemble X est notée lx (ou simplement 1 si

aucune confusion sur X n'est à craindre).

§ 1. COGÈBRES ET COMODULES (GÉNÉRALITÉS)

1.1. COGÈBRES

Dans tout ce paragraphe, C désigne une cogèbre, de coproduit d, possédant
une co-unité (à droite et à gauche) e. Rappelons (cf. A lg. III) ce que cela

signifie:

C est un module (sur K);
d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(Ci) (Coassociativité) Les applications linéaires (1 c®d)od et

(id (g) lc) ° d de C dans C (g) C (g) C coïncident.

(C2) (Co-unité) (lcg)e)od lc et (e (g lc) ° d lc.

Exemples

(1) Soit C une cogèbre de co-unité e. En composant le coproduit de C avec

la symétrie canonique de C (x) C, on obtient une seconde structure de cogèbre

sur C, dite opposée de la première. On la note C°; la co-unité de C° est e.

(2) Toute somme directe de cogèbres a une structure naturelle de cogèbre.
En particulier, 0 est une cogèbre.

(3) Supposons que C soit projectif de type fini (comme if-module), et

soit A son dual. Comme le dual de C (x) C s'identifie à A (x) A, toute structure
de cogèbre sur C correspond à une structure d'algèbre associative sur A, et

réciproquement. Pour que e e A soit co-unité de C, il faut et il suffit que ce

soit un élément unité (à gauche et à droite) pour A.
(Lorsque K est un corps, on verra plus loin que toute cogèbre est limite

inductive de cogèbres obtenues par ce procédé.)

(4) Soit V un module projectif de type fini. Soit

C End (F) V® V'
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La forme bilinéaire Tr(uu) met C en dualité avec lui-même; appliquant la

méthode de l'exemple précédent, on voit que la structure d'algèbre de définit

par dualité une structure de cogèbre sur C, de co-unité la trace Tr: -* En

particulier Mn(K) a une structure de cogèbre canonique, pour laquelle on a

d{Eu) £ EkJ 0 Eik
k

(La cogèbre opposée est plus sympathique, cf. exercice 1.)

(5) Soient Ci et C2 deux cogèbres, de coproduits dx et d2 et de co-unités

ex et e2. Soit o l'isomorphisme canonique de C2 ® Ci sur Ci (x) C2 ; le

composé

(le, (8) a® 1 c2) ° (di ® d2)

munit Ci (x) C2 d'une structure de cogèbre, dite produit tensoriel de celles de

Ci et C2 ; elle admet pour co-unité ex ® e2.

(6) L'algèbre affine d'un schéma en monoïdes affine sur K a une structure

naturelle de cogèbre, cf. n° 3.1.

1.2. COMODULES

Définition 1. On appelle comodule (à gauche) sur C tout module E
muni d'une application linéaire dE: E -> C ® E vérifiant les axiomes

suivants:

(1) Les applications linéaires (d ® lE) ° dE et (le ® dE) ° dE de E
dans C ® C ® E coïncident.

(2) (e®lE)odE=lE.
L'application dE s'appelle le coproduit de E; on se permet souvent de le

(la) noter d.

Remarques

1) Il y a une notion analogue de comodule à droite ; on laisse au lecteur

le soin de l'expliciter (ou de remplacer la cogèbre C par son opposée C°). [Le
rédacteur s'est aperçu trop tard qu'il était plus commode d'échanger droite et

gauche, i.e. d'appeler «comodules à droite» ceux de la définition 1.]

2) Toute application linéaire dE:E~+C®E définit de manière
évidente une application linéaire dE:E®E'->C. Lorsque E est un
ÄT-module projectif de type fini, l'application dE^> dE est un isomorphisme
de Horn (is, C ® E) sur Horn (is ® is", C). Or E ® E' - End (is) a une
structure naturelle de cogèbre, cf. n° 1.1, Exemple 4). On peut vérifier
(cf. exercice 1) que dE vérifie les axiomes (1) et (2) si et seulement si dlE est
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