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6. GRAPHS, COMPUTATIONS, AND THE SHAPE OF W

The computations of zeros graphed in our figures were performed in double
precision (approx. 18 decimal places) on a Silicon Graphics workstation. Some
of the zeros were checked for accuracy by recomputing them in double
precision (approx. 28 decimal places) on a Cray X-MP. The zero-finding
program used the Jenkins-Traub algorithm and was taken from a standard
subroutine library. Checks showed that the values that were obtained were
accurate on average to at least 10 decimal places, which was sufficient for our
graphs. The program that was used appeared to produce accurate values on
the Cray for the zeros for polynomials of degrees up to about 150.
(Computation of zeros of polynomials of much higher degree would have
required better algorithms, cf [9].)

Zeros of a large set of random polynomials f(z) € P of degree 100 were
computed on the Cray, and they exhibit most of the features visible in
Figures 1-3. However, they are not as interesting as the lower degree zeros that
are exhibited in Figures 1-3. The ‘‘spikes’’ or ‘‘tendrils’’ that generate the
fractal appearance in the graphs we include come from a small fraction of the
polynomials. Sampling even 104 of the 2% polynomials f(z) € P of
degree 100 does not yield a good representation of the extremal features that
we expect to see for high as well as low degrees.

Graphs were prepared using the S system [2].

The graphs in Figures 4-6 were prepared differently._A program was written
that checked whether a given w with | w|< 1 is in W. Note that
(6.1)

Y acw*| < B=max(l,|]1+wl|)/0-]|wl|?),
k=0

where the aq, are any 0, 1 coefficients, since we can write

8

arwr = (ag+a;w) + (a; + as w)w? + -

k=20

The procedure was to test all sets of 0,1 coefficients a, ..., 130 tO see
whether they could be the initial segment of coefficients of a power series

(6.2) f@ =1+ i a,z*
k=1

for which f(w) = 0. Let us regard the strings of coefficients Ay, ..., Ay aS
the leaves of a balanced binary tree, with the nodes below the root



344 A. M. ODLYZKO AND B. POONEN

corresponding to a;, those below to a,, a,, etc. The procedure was to
explore this tree, checking whether
d

1+ Z ajo
j=1

(6.3) >|z|?*'B

at any stage. If (6.3) is satisfied, then w is not a zero of any power series of
the form (6.2) with initial coefficients 1, a,, ..., a4, and the subtree of that
node does not have to be explored. If all the leaves are discarded by this
procedure, we have a rigorous proof that w ¢ ﬁ/, and so in fact an open
neighborhood of w is outside W. On the other hand, if a leaf was found with

(6.4) 1+ E a;w/

J=1

120
‘ <|z|®%B/10,

then the program assumed that w € w. (By establishing lower bounds for the
120

derivative of the polynomial 1 + Z a;z/ at w and using crude upper bounds
1

for the second derivative, one could in principle prove that there is some
point w’ close to w such that w’ € ﬁf, although the 10 in condition (6.4) might
have to be decreased. Another way to prove this would be to use Lemma 3.1.
This step was not carried out.) Figures 4-6 were produced by testing each w
in a 1936 x 1936 or a 1944 x 1944 grid (corresponding to the resolution of
our laser printer). There were few points w for which neither condition (6.3)
nor condition (6.4) held. The exceptions occur primarily in Figure 4, but they
do not affect how the picture looks. Had we used a tree of depth 80, the excep-
tions would have been much more frequent.

The computations of Figures 4-6 are not completely rigorous in that the
determination of w & W is rigorous, while that of w € W is not. Moreover,
an implicit premise in the preparation of Figures 4-6 was that if a point
we ﬁ/, then the whole neighborhood of w represented by the corresponding
pixel is in W. On the other hand, the computations of Figures 1-3 are
rigorous.

It is possible to use computations to obtain rigorous estimates for W that
are sharper than those of Theorem 2.1. As an example, we sketch how a
moderate amount of straightforward computing establishes that there
are no we W\R with | w|< 0.7. We modify the method of proof of
Theorem 2.1. Write

10 1
(6.5) f) =1+ Y ajzj+£(z“+z12+ )+ g(2),

J=1
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where

(66) g(z)zi E Skzk, .81(—_— +1.

Then we can write

f(z) = F(z) + g(2),
F(z) = G)/2(1 - 2),

; 10
G(z)=2(1-2) (1 + ) ajzf) + z!.

j=1

If we establish that | F(z) | > | g(z) | on some simple closed contour about the
origin, then by Rouché’s theorem f(z) and F(z) will have the same number
of zeros inside that contour. To prove that | F(z) | > | g(z) | on a contour C,
it suffices to show that | F(z) | > g(z) + & on a discrete set of points z on C,
where & > 0 is such that bounds on the derivatives of F(z) and g(z) guarantee
that | F(z) | — | g(z) | will not decrease by more than & between the sampling
points. This was applied to each of the 2!° choices of a,, ..., a,. Of the
1024 functions F(z), 997 satisfied | F(z) | > | g(z) | on

Cy={z:]z]|=0.7}.

The remaining 27 functions F(z) were shown to satisfy | F(z) | > | g(z) | on the
contour

C,=1{z:]1z]=0.7, |y|>0.04}
uf{z:x=—0.74,|y|<0.04}
u{z:|y]|=0.04, —0.74<x< —-0.6,|z]|>0.7}.

Finally, zeros of each of the 1024 polynomials G(z) were computed, and it
was found that 85 of these polynomials had a single zero in | z | < 0.74, and
the remaining 939 had none. Thus in all cases we can conclude that f(z) has
at most one zero in | z|< 0.7. Such a zero has to be real.

The estimates used above were crude, and with more care one can either
decrease the amount of computing (and even eliminate it altogether) or obtain
better bounds for W.

The basic principle that makes it possible to obtain good estimates of W
is that for extremal points w € W, the power series f(z) with 0, 1 coefficients

such that f(w) = 0 are restricted. For example the region depicted in
Figures 3 and 4 is

V={z=x+1iy: -0.501 < x < —-0.497,0.537 < y < 0.541} .
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Numerical computation (evaluating polynomials of degrees <9 with
0, 1 coefficients at a 41 X 41 uniform grid, and bounding derivatives) shows
that if w e V' n W, then w can only be a zero of a power series of the form

f@R=14+z+22+z2*+27+2°+ Y apz".
k=10
This restricted the set of f(z) that had to be considered, and made possible
the computation of Figure 3, as it would not have been feasible to examine
all polynomials of degrees < 32. Furthermore, this restriction on the
coefficients of f(z) makes it possible to estimate the shape of V' n w.

It should be possible to prove rigorously, with the help of numerical
computations, such as those mentioned above, that the hole in W mentioned
in the Introduction and pictured in Figure 6 is isolated in the sense that there
is a continuous closed curve in W N U, for U a small rectangle, that encloses
the hole. We have not done this. B

To explain the fractal appearance of W, suppose that we W,|w|< 1,
and that f(w) = 0 where

d
f@Q=1+ ) a;z/, a=0,1.
j=1
Suppose that

g@) = f@) +z9*1 ), byzk, by=0,1.

k=0

If g(z) = 0 and | z — w|is small, while d is large, we have
0=g@)=gw) +(z—-wg'w

= wi+l Y bewk+ (z—w)f'(w) .
k=0
If f'(w) # 0 (which as far as we know may hold for all w with |w]|< 1),
then g’(w) # 0 for d large enough, and we can expect that
wd+1 Z:’zobkwk

S'(w)

=W —

Thus if
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then we expect to find zeros in a neighborhood of each point of

w—wit(f'(W) 10w .

The set Q(w) is connected [1], and for w ¢ R, it seems that it contains a small
disk around the origin. The set Q(w) is a continuous function of w,
which accounts for the similarity of the protrusions from W visible in
Figures 5 and 6. (The protrusions in Figure 4 are different, since there
the sets Q(w) are of different shape from those in Figures 5 and 6.)

Acknowledgements. The authors thank E.R. Rodemich for originally
raising the question of the distribution of zeros of 0,1 polynomials,
M. Sambandham for providing a copy of [15], A.R Wilks for help with
graphics, and D. Zagier for informing them of the work of T. Bousch [5, 6].
Special thanks are due to David desJardins and Emanuel Knill for permission
to use their proofs of Lemma 5.1.

REFERENCES

[11 BARNSLEY, M. Fractals Everywhere. Academic Press, 1988.

[2] BECKER, R.A., J.M. CHAMBERS and A.R. WILKS. The New S Language.
Wadsworth and Brooks/Cole, 1988.

[3] BHANOT, G. and J. LACKI. Partition function zeros and the 3-d Ising spin glass.
J. Stat. Physics 71 (1933), 259-267.

[4] BHARUCHA, A.T. and M. SAMBANDHAM. Random Polynomials. Academic

Press, 1986.
[S] BouscH, T. Paires de similitudes. Unpublished manuscript, 1988.
[6] —— Sur quelques problémes de dynamique holomorphe. Ph. D. thesis, Univ.

Paris-Sud, 1992.
[71 Brenti, F., G.F. RoYLE and D.G. WAGNER. Location of zeros of chromatic
and related polynomials of graphs. Canadian J. Math. To appear.
[8] BRILLHART, J., M. FILASETA and A.M. ODLYZKO. On an irreducibility theorem
of A. Cohn. Canad. J. Math. 33 (1981), 1055-1059.
[9] CHuDNOVSKY, D.V. and G.V. CHUDNOVSKY. Computer algebra in the service of
mathematical physics and number theory. In Computers in Mathematics,
D.V. Chudnovsky and R.D. Jenks, editors, pp. 109-232. Marcel Dekker,
1990.
[10] Devaney, R.L. An Introduction to Chaotic Dynamical Systems. 2nd ed.,
Addison-Wesley, 1989.
[11] ERDOS, P. and P. TURAN. On the distribution of roots of polynomials. Ann.
Math. 51 (1950), 105-119.
[12] FILASETA, M. Irreducibility criteria for polynomials with non-negative
coefficients. Canad. J. Math. 40 (1988), 339-351.
[13] FratTO, L., J.C. LAGARIAS and B. POONEN. Lap numbers and periodic points
of the B-transformation. Ergodic Theory Dyn. Sys. To appear.



	6. Graphs, computations, and the shape of $\bar{W}$

