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5. W IS PATH CONNECTED

Here we refine the argument of the previous section to prove W is path
connected. There are two main difficulties that arise. One is that the path
connected analogue of Lemma 4.2, although still true (at least when M is
Hausdorff), is much harder to prove. The second is that a decreasing
intersection of compact path connected sets need not be path connected, so
we can no longer restrict our attention to the zeros within {z:|z|< 1 — 8}.

The lifting lemma below will be used as a substitute for Lemma 4.2. Its
proof is based on proofs obtained independently by David desJardins and
Emanuel Knill.

LEMMA 5.1. (Lifting lemma): Let M be a Hausdorff space and
let mw:M"—> M"/S, be the projection map. Let f:[0,1] > M"/S, be a
continuous map. Then there is a continuous map g:[0,1] > M" such
that f=mog.

SUBLEMMA 5.1. Let A = {te€[0,1]: f(t) consists of n copies of a
single point}. Let g:[0,1] > M™ be an arbitrary function that is a lift
of f. Then g is automatically continuous at all t, € A.

Proof. Suppose toeA and f(%) ={x,x,...,x}. If U is an open
neighborhood of x,

g~ Un) = f-1(m(@Um)

which is open. Since such subsets U” form a neighborhood base at
(x, x, ..., x) € M", this proves that g is continuous at #,.

SUBLEMMA 5.2. Let I, 1, be closed subintervals of 1[0,1] such that
Iin1I, is a single point {t}. If g; Is a continuous lift of f on
1;(j = 1,2) then there is a continuous lift g of f on I,uUl, such that
gl =&.

Proof. Since g,(¢) and g,(¢) differ only by a permutation, we can
compose g, with a permutation 6: M” - M" and then paste the result to g:.

SUBLEMMA 5.3. The conclusions of Sublemma 5.2 hold even if I,
and I, intersect in more than a point.
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Proof. This follows form Sublemma 5.2 since I; U I, can be expressed
as the union of I; with at most two closed subintervals of I, each meeting /,
in a point.

SUBLEMMA 5.4. If I is a closed subinterval of [0,1] andevery tel
has a neighborhood on which f has a lift, then f has a lift on I

Proof. By compactness, we can cover I by closed intervals I, I,, ..., I
on which f has a lift, and we may assume I, n I, # @ for 1 <j < k. By
induction on j, Sublemma 5.3 lets us extend the lift on I; to a lift on
LulLbu - uUlj. '

SUBLEMMA 5.5. The same holds if I is any subinterval of [0, 1].

Proof. Let C;, ¢ C, C --- be closed intervals such that \U C; = I. By

i=1
Sublemma 5.4, there is a lift on each C;. By repeated use of Sublemma 5.3,
extend the lift on C; to a lift on C,, extend this to C;, etc. This process gives
a lift on I.

Proof of Lemma 5.1. We use induction on n. The case n =1 is
trivial, so assume » > 1. By Sublemma 5.1, it suffices to find a lift on
each connected component I of [0, 1]\A. By Sublemma 5.5 it suffices to
show that any ¢, € I has a neighborhood on which there is a lift.

Suppose zZi, 22, ..., Zx(k>2) are the distinct elements of the
multiset f(#,), occurring with multiplicities n,, n,, ..., n; respectively.
Since M i1s Hausdorff, there exist pairwise disjoint neighborhoods U, of z;.
Let N be a closed interval neighborhood of ¢, such that ¢ € N implies
f(t) e (U™ x -+ x U™). Then on N, we can lift f to a path f in
Mmi/S, X -+ X M"k/S,, since the projection

M"i/S, X« X M"/S, — M"/S,

restricts to a homeomorphism on the projections of UJ!' X --- X Uj*. By
the inductive hypothesis applied to each of the k£ coordinates of f, we can
lift £ to a path in M"1 X -+ X M" = M" as desired. [

THEOREM 5.1. W s path connected.

Proof. Let M be {z:]z]|< 1} with the unit circle shrunk to a point P.
Again M is topologically a sphere, so we may give it a bounded metric d.
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Let M= be the set of sequences x = {x;};, which converge to P and define
a metric d, on M, by

de (X, ) = sup d(x;, yi) -

Let the group S. of permutations of {1, 2, ...,} act on M by permuting the
coordinates. Define a metric D on the quotient space M*/S. by letting
D(x,y) = inf d.(x, 0y).
6 €S,
Here (x,y) denote the projections of x,y e M* to M*/S.. (That

D(x,y) = 0if and only if x = y requires the convergence of x, y.) The set of
zeros of a power series

1 +e12+ 8224+ -

inside {z: | z | < 1} forms a sequence in M converging to P (by Proposition 2.1)
or else is finite, in which case we append an infinite sequence of P’s. This
defines a map

f:{0,1}® > M=/S, .

By the same Rouché’s theorem argument used in the proof of Theorem 4.1,
this map is continuous. The conditions of Lemma 4.1 hold for the same reason
as before, so the image of f is path connected.

Suppose zo€ Wn{z:|z|<1}. Let ®:[0,1] > M=/S. be a path
from the image under f of a 0,1 power series vanishing at z, to
f((O’ Oa "')) = {P9P9P9 '“}'

Fix m > 1, and let M,, be {z:|z|< 1} with the annulus

{z:1 - 1/m<|z]< 1}

shrunk to a point Q. Define | | on M,, by letting |Q|=1— 1/m. By
Proposition 2.1 there is an upper bound n on the number of zeros of
a 0,1 power series inside {z:|z|< 1 — 1/m}. The path ® induces a path

®,:[0,1] = M,)"/S, .

(Apply the projection M — M, to each element of w(¢), and throw away
infinitely many Q’s to get ®,,(¢).)

Pick m, > 1 such that|zo | < 1 — 2/m,. We define inductively a sequence
of paths

Om: [0,t0] = W, m=my, my+1,...,
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each extending the one before. First apply Lemma 5.1 to lift w,, to a
path [0, 1] —>M;0. Since some coordinate of ®n,,(0) is zo and since all
coordinates of ®,,,(1) are Q, we get a path ®,, from zoto Q in M,,,. Let t,,,
be the smallest # € [0, 1] such that | @,,(¢) | = 1 — 2/m,. Then by restriction
to [0, t,,] we get a path @, in C since {z € M,,,: |z|< 1 — 2/mo} can be
identified with {z € C:|z|< 1 — 2/m,}. Finally, since ®m, () is always a
coordinate of w(?), @, (f) € W for all ¢ € [0, Emol-

By the same process, we inductively find for each m > m, a path
Om: [tm1,11 > M,, such that ®,(tm—-1) = Om—-1(tm_1. Let ¢, be the
smallest ¢ > ¢,,_; such that

- 2
|on ()| >1-—,
m
and obtain a path

a)m: [tm—l9 tm] - W
which we append to ®,,_; to obtain

@,:[0,t,] > W

such that ®,,(¢?) is always a coordinate of ®(?).
Let ¢, = sup t,,. Piecing together the w,,’s gives a continuous map
K @: [0, 1) > W
such that ®(#) is a coordinate of w(¢) for all t € [0, t). The set of limit
points of | @ (¢) | as ¢ = ., is a closed interval I. Let ®(¢=) = {21, 22, Z3, - }-
If r € [0, 1) is distinct from | z; |, | 22|, | z3 |, ... then sup | r — | z; || > O (since

I

{z;} = P) and by continuity of w, r also differs by some ¢ from all coor-
dinates of w(¢) for ¢ in a neighborhood of ., so r cannot be a limit point
of |o(¢)|ast—t.. Thus I C {1, |z:|, | z2], ...} but|z;|— 1 so I must be a
single point. Since |0 (t,)|=1 — 2/m for m > my, lim |0 (¢) | = 1.

| Sl P
Case 1: 1 is the only limit point of w(¢) as ¢ — ¢,. Then @ extends to a
path [0, f.,] = W from z, to 1.

Case 2: There is a limit point 8 #1,|/0|= 1, of ®(¢) as t > ¢, . By
Theorem 3.1, there is an open disc centered at 6 contained in W. For some
t < to, ®(t) is in this disc, so we can replace the tail end of @ on [¢, t..) by
a straight line from @(?) to 6 in W.

In either case we can connect z, to a point on the unit circle via a path
in W. Ihe same is true if z, € ﬁ/, Izo | > 1, since Iif/is closed under z+— 1/z.

Since W contains the unit circle, this proves that W is path connected. [
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