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From Lemma 3.5, it follows then that

Bc Y [( Zn: szj) + (% + O(|5|)) z"B]

8‘,...,8356{0,1} j=1

so for sufficiently small 8, we may apply Lemma 3.1 to deduce z € W. ]

We now combine all the results of this section.

THEOREM 3.1. There is an open neighborhood of {z:|z]|=1,z# 1}
contained in W.

Proof. Apply Propositions 3.2 and 3.3. [l

COROLLARY 3.1. If ze(—-1,—-1+08) for sufficiently small &
then z is a multiple zero of some 0,1 power series.

Proof. By Theorem 3.1, if § is small enough we can pick 0, 1 power series
f. and zeros z, of f, such that z, ¢ R and z, = z as n = o. By taking a
subsequence we may assume that the coefficient of z* in f, is eventually
constant for large n, for each k. By a Rouché’s Theorem argument, the pairs

of zeros {z,, 2,} of f, must converge to (at least) a double zero at z
of lim f,. [

n—o

4. W IS CONNECTED

Since W is countable, we cannot hope to prove W is connected. We prove
instead that W is connected. First we need some topological lemmas.

Give {0, 1} the discrete topology and {0, 1}© the product topology, as
usual. If v = (vy, 03, ..., U,) is a finite vector of 0’s and 1I’s, let S, be the set
of sequences in {0, 1}® which start with v. The following lemma is the key
ingredient in the connectivity proof.

LEMMA 4.1. Let Y be a topological space. Suppose f:{0,1}¢—>Y
IS a continuous map such that

(4.1) S (Su0) N f(Su1) =0

Jorall ve{0,1}", andall n>0. (Here v0 denotes the vector v with
0 appended, etc.) Then the image of f is path connected.
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Proof. Let w(0) = f(x;) and w(1) = f(x;) be elements of the image we
wish to connect by a path. Find x;,,, xj,, € {0, 1} such that x;, x;,, have
the same first coordinate, and x;,,, x; have the same first coordinate and
SCei2) = f(x1,,). df x{,x; have the same first coordinate, take
X1/2 = Xi,, = X; otherwise apply the hypothesis (4.1) with v as the empty
vector.) Let w(1/2) be this common value.

Next find x4, x{,, € {0,1}®, using the same argument, such that
X, X174 agree in the first two coordinates, xi,,, X;,, agree in the first two
coordinates, and f(x;,4) = f(xi,4). Let w(1/4) be this common value. Do
the analogous thing at 3/4.

By induction, we may continue to define Xy/zn, X};/55, w(d/2") at all
dyadic rationals d/2" in [0, 1], such that x,,, and x(.1)/2» agree in the
first n coordinates and

w(d/2") = f(Xasan) = f(Xp2n)

By induction, we see that all the x; with g € [d/2", (d + 1)/2") agree in the
first n coordinates. Hence for

r=) g2 7'e[0,1], ¢ €{0,1}
i=1

not a dyadic rational, we may define

x,=x, = lim x., where o(n)= ) &2/,
n— o i=1
and w(r) = f(x,). Then w maps [d/2",(d + 1)/2"] into f(S,) where
v e {0,1}" is the first n coordinates of x., r € [d/2",(d + 1)/2") and of
X(d+1)/2n -

We now show that w is continuous at r € [0, 1]. Let U be an open set
of Y containing w(r). Then f~-!(U) contains S, and S, for some finite
substrings v, v’ of x,, x, respectively, by continuity of f. By the last sentence
of the previous paragraph it follows that

w-1(U) 2 W—l(f(Su) % f(Sv’))

will contain a neighborhood of r.
Thus w: [0, 1] — image (f) is a continuous path, and image (f) is path
connected. [

Let M be a topological space. Give M” the product topology and let the
symmetric group S, act on M" by permuting the coordinates. The space
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M"/S,, which parameterizes n-element multisets, can be given the quotient
topology.

LEMMA 4.2. If A c M"/S, is connected, and the multiset {P, P, ..., P}
isin A for some PeM, then the subset B C M of all coordinates
of points in A is connected.

Proof. Suppose not. Then there are open sets U, V' € M such that U n B

and V N B are disjoint nonempty sets with union B. Without loss of generality,
P e U. Let

U=UxUX"---xU,

Vi=(VXMXMX- -+ XM)
UMXVXMX- -+ XM)

UMXMXMX- - xXV).

Then U’, V' are open sets in M” which are stable under S,, so they project
to open sets U”’, V" in M"/S,. Also A C U” u V" since a point in A must
have all coordinates in U, or else at least one coordinate in B\U C V.
Furthermore P € U n A, and V" n A is nonempty also, since at least one
point of A has a coordinate in V, since V N B # (. Finally
U’'NnV"”"nNnA=0, since it is not possible for a point of 4 to have all
coordinates in U, yet have some coordinate in V. This contradicts the
connectedness of 4. [

THEOREM 4.1. W is connected.
Proof. First we show that for 8§ € (0, 1),
Ws=Wniz:|z|]< 1) uiz:1 -8 <]z 1}

is connected. The idea is to apply Lemma 4.1 to the function f which assigns
to (g1, €4, ...) the set of zeros of

1 +ez+8e22+ -

inside {z:|z|< 1 — 8}. To make a continuous map of this requires some
manipulation.

By Jensen’s theorem, as was shown in Section 2, there is an upper
bound » on the number of zeros that a power series with 0, 1 coefficients can
have inside {z:|z|<1—8}. Let M be {z:]z|< 1} with the annulus
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{z:1 -8 <|z|< 1} shrunk to a point P. (Therefore M is topologically

a sphere.) To each power series 1 + ), €;z', €; € {0, 1}, we assign the set
i=1

of zeros inside {z:|z|< 1 — 8}, (counted with multiplicities) and throw in
extra copies of the point P as necessary to bring the total number of points
to n. Since the order of these n elements of M is unspecified, we obtain a point
of M"/S,. Let f((g,, €,, ...)) be this point.

We claim that this map

f:{0,1}® > M"/S,

is continuous. This follows easily from Rouché’s theorem; if two power series
agree in the first m coordinates for m sufficiently large then their zeros
inside {z:|z]|< 1 — 8} will be within £. Some may escape or enter the disk,
but this is not a problem, since in the topology on M, P is close to all
points z with | z | sufficiently near 1 — §.

We next check condition (4.1) of Lemma 4.1. This is easily done using
the following trick: given

V= (Ul, V35 <oy Un) E{OQ l}n ’

let w=(,02, ..., Vp, 1, 01,03, ...,0,). Then vesS,,, wesS,, and
() = f(w) (we extend v, w to infinite vectors by appending 0’s), since

1+ 0,2+ 0,22+ -+ +0,2"
and

1+ Ulz+uzz2+ % %% +Unzn+zn+l+vlzn+2+ . e +Unzzll+1
=0 +0,2+022+ - +0,2") (1 + z"*D)

have the same zeros inside {z:|z|< 1 — 8}. Therefore we may apply
Lemma 4.1 and deduce that the image of f is path connected.

Since f((0,0,...)) = (P,P, P, ..., P), we may apply Lemma 4.2 with
A = image(f) to deduce that W; with the annulus {z:1 — & <|z|< 1}
shrunk to a point P is a connected subset of M. This is equivalent to the
connectivity of ﬁfs .

Since W n {z:]z|< 1} is the decreasing intersection of the compact
connected sets ﬁfl /m» 1t too is connected. So is its image under z+— 1/z.
Finally, W is the union of these two sets, which meet on the unit circle,
so W is connected as well. []
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