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To show that „(z) has a zero ß near a am>„, let

(2.18) g(z) m +

Then g (a) 0. Consider the circle a | (10n)_1. On this circle,
I g(z) I ^ m/100, while

m - I

(2.19) |(1 +z+ +zm~l)-m|<£ 1 I

k 1

so for m o(n), by Rouché's theorem g(z) and fm,„(z) have the same

number of zeros inside the circle, namely one. This proves the claim and

answers the Conway-Parker question.

3. A NEIGHBORHOOD OF THE UNIT CIRCLE

In this section^we prove that an open neighborhood of{z:| z | 1, z ^ 1}
is contained in W.

Lemma 3.1. If B ç C is compact, n ^ 1, | z | < 1, and

(31) Be U [( £ 8/Z1) + Z*B]
e1,e2, •••> Ene(0, 1} [\i 1 / J

then every element of B is expressible in the form
oo

(3.2) Y, E-z'> S/ e {0,1}
7=1

In particular, if - 1 e B, then z e W.

Proof Given bm e B, inductively pick bm + l e B and em/e{0,1},
m ^ 0, 1 ^ i < n such that

&m ^ ^ T Znbm+i

Successive substitution yields

(M
— In \

Y Y ^miZn"
m 0 i I J
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Since B is compact, zMnbM~* OasM-^oo, so

go n

bo£ S »

m 0 / 1

which is the desired form.

Proposition 3.1. If z e R, - 1 < z < - (p_1, J/zp« z e W.

Proof. Let B [-1, - z]. Then, since -1 < z ^ - (p_1 implies
z - z2 ^ - 1, we have

(z + zB) v zB [z - z2, 0] u [- z2, - z]

[z - z2, - z]

2 [-1, -z]
B

We now apply Lemma 3.1 with n 1, and conclude that z e W.

Lemma 3.2. If B c C w compact, -leB9n^l,xeC and

(3.3) £ ç int U f( t e/xA + xnB
Sj, e„ e {0, 1} [\ i 1 /

w/zprp int S denotes the interior of S, then there is a neighborhood N
of x such that

7Vn{z:|z|<l}ç W.

Proof. Condition (3.3) implies that (3.1) holds for z in a neighborhood
of x, so Lemma 3.2 follows from Lemma 3.1.

Lemma 3.3. If B {z: | z | ^ Z?} for some R ^ 1, n ^ 1, | jc | e=- 1

and

n

(3.4) B c int U (jC + B)
j= i

then

x e int W

Proof. Since W contains the unit circle and is closed under z^ 1/z,
this follows trivially from Lemma 3.2.

Proposition 3.2. If | x | 1, x ^ ± 1, then x e int W.
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Proof. We claim that if R ^ 2, then the condition (3.4) of Lemma 3.3

holds for n large enough, If x exp (71/a) and a is irrational, then by
Kronecker's theorem {xj : j ^ 1} is dense on the unit circle, and then for
every ô > 0, the disk of radius R + 1 - ô is contained in the union on the

right side of (3.4) for n large enough. If a is rational, then the {xJ : y ^ 1} are
the vertices of a regular k-gon, and k ^ 3 since x ^ ± 1. In that case the union
on the right side of (3.4) contains a disk of radius rf where r, 1, and R are
the sides of a triangle, and the angle between the sides of lengths r and 1 is

7i/k. Therefore, by the Law of Cosines,

R2 \ + r2 - 2rcos(7i/fc)

and so

r œs(n/k) + (cos2(n/k) + R2 - 1 )1/2

Since cos (n/k) ^ cos(7t/3), we find that

1/4 + (R2 - 3/4)1/2 ^ R + 1/20

for R ^ 2, since (R2 — 3/4)1/2 — R is an increasing function of R. D

Proving - 1 e int W is trickier, because it will not do to take B as a disc
of radius ^ 1 if Im (z) is small compared to Re(z+ 1). We will instead
take B as a parallelogram that becomes flatter and flatter as Imz 0. The
following two lemmas will be used in verifying the condition of Lemma 3.1.

LEMMA 3.4. Let r ("J _°).Let7V(J) (- l)i( J ).Then
for n ^ 16

< Î EjVj-.Sj {0, 1}J

contains {(£): a, beZ, | a\^1, | b|^ n-16}.

Proof. Given such (ab), first pick s,, s2 so that s^, + has first
coordinate a. Next pick s3 s4 0 or 1 so that e^i + z2v2 + s s4u4
has first coordinate a and second coordinate b' with b' ^ b mod 2. Certainly
I b'I < 1 + 2 + 3 + 4 10, so I b - b' |< n - 6. If b > b', then

£i^i + 82^2 + £3^3 + 64U4 + u5 + Vs + b-b'
(a,b')-(1, -5) + (1,5 + 6- 0')

(a, b)
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If b < b\ then

£\ü\ + 82^2 +• £3^3 + £4^4 + Ü6 + Ü6 + b'-b
(a, b') + (1, -6) - (1,6 + b'-b)
(a, b)

Lemma 3.5. Let T, Vj be as in Lemma 3.4. Let B be the square with
vertices (± 1, ± 1). Then for n ^ 35,

Bç U
slte2, e„ e{0, 1}

n \ 1I *jOj) +-T"B
j 1 / 2

Proof. \ Tn is the parallelogram with vertices

±^(l,-n)±^(0, 1).
2 2

The cross-section of this with x-coordinate x0 is the vertical interval

[- nxo - 1/2, - nx0 + 1/2] for - 1/2 ^ x0 ^ 1/2. Hence given (a, ß) e B
pick a e { - 1, 0, 1} such that - 1/2 ^ a +ma ^ 1/2 and then pick be Z such

that - n (a + a) + 1/2 ^ ß + & ^ - n(a + a) + 1/2. Since | ß | ^ 1 and
I a + a I ^ 1/2, we see \ b \ ^ ^(n + 1) + 1 ^ n - 16 if n ^ 35. Then

(a, ß) + (a, b) e \ TnB and by Lemma 3.4 we can pick 8i,...,s„ such
n

that Yé zj°j ~ (a> ^)> so Lemma 3.5 follows.
j= 1

Proposition 3.3. - 1 e int W.

Proof. Since W is closed under z*~* z and z^ 1/z, it suffices to show

that for \z\< 1, lmz>0, and \z+ l| sufficiently small, z is in IT.
(Proposition 3.1 handles the case z e R.) Let ô z + 1. Let B be the

parallelogram with vertices ± 1 ± 5.

We work in a nonstandard coordinate system for C, with basis vectors 1

and 6, so B is represented by the square with vertices (± 1, ± 1). We claim
that multiplication by z is represented by the matrix T ("} _J) up
to 0(|ô|). We have

z ' 1 - 1 + ô

z-S= - Ô + Ô2

and

82 - 2(Re8)0 + |5|2 0

so 82 corresponds to (| 8 |2, - 2 Re 8) in our basis, and is 0{\ ô |).
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From Lemma 3.5, it follows then that

Be u [( t + (- + °(I6I)) Z"B
8!, 835 6{0, 1} L \ ./ 1 / \2 /

so for sufficiently small 8, we may apply Lemma 3.1 to deduce z e W. D

We now combine all the results of this section.

Theorem 3.1. There is an open neighborhood of {z:|z|=l,z^l}
contained in W.

Proof. Apply Propositions 3.2 and 3.3.

Corollary 3.1. If z e (- 1, - 1 + 8) for sufficiently small 8

then z is a multiple zero of some 0, 1 power series. j

Proof. By Theorem 3.1, if 8 is small enough we can pick 0, 1 power series

fn and zeros zn of fn such that zn $ R and zn Z as n -> 00. By taking a

subsequence we may assume that the coefficient of zk in fn is eventually
constant for large n, for each k. By a Rouché's Theorem argument, the pairs
of zeros {zn,zn} of fn must converge to (at least) a double zero at z
of lim fn.

n -* 00

4. W IS CONNECTED

Since W is countable, we cannot hope to prove W is connected. We prove
instead that W is connected. First we need some topological lemmas.

Give {0, 1} the discrete topology and {0, 1}® the product topology, as

usual. If v (l>! v2i vn) is a finite vector of 0's and l's, let Su be the set

of sequences in {0, 1}® which start with v. The following lemma is the key
ingredient in the connectivity proof.

Lemma 4.1. Let Y be a topological space. Suppose /:{0, 1}®->T
is a continuous map such that

(4.1) f(Svo)nf(Svl)*Q
for all v e {0, 1}", and all n ^ 0. (Here vQ denotes the vector u with
0 appended, etc.) Then the image of f is path connected.
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