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To show that f,, ,(z) has a zero B near a = ., ,, let
(2.18) g(z)=m+ z7".

Then g(a) = 0. Consider the circle |z — a|= (10n)~!. On this circle,
| g(z) | > m/100, while

m—1

.19 |Q+z+ - +z"H)-m|< ) |zF-1]|=0@m¥n),
k=1

so for m = o(n), by Rouché’s theorem g(z) and f,, »(z) have the same
number of zeros inside the circle, namely one. This proves the claim and
answers the Conway-Parker question. [

3. A NEIGHBORHOOD OF THE UNIT CIRCLE

In this section we prove that an open neighborhood of {z: lz|=1,z# 1}
is contained in W.

LEMMA 3.1. If BC C iscompact, n>1,|z|<1, and

3.1) Bc U [( ¥ a,-zf) n an] ,

€1,82, ..., 85, € {0, 1} i=1

then every element of B is expressible in the form
(3.2) Y &z, &€{0,1}.

In particular, if —1e€ B, then ze€ w.

Proof. Given b, € B, inductively pick b,.; € B and ¢,; € {0, 1},
m>0,1< i< n such that

bm = ( Z Smizi) + anm_,_l .

i=1

Successive substitution yields

m=0 i=1

M-1 n
by = ( Z E 8mizmn+i) +ZMnbM-
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Since B is compact, z4" by, — 0 as M — o, so
<o n
b0= Z Z 8mi‘zmn_*.i7
m=0 i=1

which is the desired form. [

PROPOSITION 3.1. If zeR, —1<z< —¢~!, then ze€ W.

Proof. Let B=[-1, —z]. Then, ‘since ~ 1 <z< —¢~! implies
7z —z>< — 1, we have

(z+zB)uzB =[z-2%0]v [-2z2, —Z]
= [z 2%, — 2]
2[-1, -z]
=B.
We now apply Lemma 3.1 with » = 1, and conclude that z € w. []
LEMMA 3.2. If BcC C is compact, —1e€eB,n>1,xeC and

(3.3) B C int U [( i 8,-xi) + x"B] ,

€1, ..., €p €{0, 1} i=1

where intS denotes the interior of S, then there is a neighborhood N
of x such that

Nn{z:|z|<1}c w.

Proof. Condition (3.3) implies that (3.1) holds for z in a neighborhood
of x, so Lemma 3.2 follows from Lemma 3.1. [

LEMMA 3.3. If B={z:|z|<R} for some R>1,n>1|x|=1
and |

(3.4) Bcint U (x/+ B),
Jj=1
then
X e int W .
Proof. Since W contains the unit circle and is closed under z~ 1/z,
this follows trivially from Lemma 3.2. [

PROPOSITION 3.2. If |x|=1,x+# =1, then xeintW.
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Proof. We claim that if R > 2, then the condition (3.4) of Lemma 3.3
holds for n large enough. If x = exp(nia) and a is irrational, then by
Kronecker’s theorem {x/:j > 1} is dense on the unit circle, and then for
every & > 0, the disk of radius R + 1 — § is contained in the union on the
right side of (3.4) for n large enough. If a is rational, then the {x/:j > 1} are
the vertices of a regular k-gon, and k£ > 3 since x # =+ 1. In that case the union
on the right side of (3.4) contains a disk of radius r, where r, 1, and R are
the sides of a triangle, and the angle between the sides of lengths » and 1 is
n/k. Therefore, by the Law of Cosines,

R2=1+r?-2rcos(n/k),
and so
r = cos(n/k) + (cos?(n/k) + R2 — 1)1/2,
Since cos(n/k) = cos(n/3), we find that
r=1/4+ (R*-3/49)V2>R + 1/20

for R > 2, since (R? — 3/4)/2 — R is an increasing function of R. [

Proving — 1 € int W is trickier, because it will not do to take B as a disc
of radius > 1 if Im(z) is small compared to Re(z + 1). We will instead

take B as a parallelogram that becomes flatter and flatter as Im z — 0. The
following two lemmas will be used in verifying the condition of Lemma 3.1.

LEMMA 3.4. Let T= (") _}). Let v;=Ti(}) = (=17(’,). Then
for n>16

{ Zn: EiV;lE; € {O, 1}}

Jj=1
contains {(,):a,beZ,|a|<1,|b|<n - 16}.

Proof. Given such (§), first pick €,, €, so that &,0, + €,0, has first
coordinate a. Next pick €3 = &, = 0 or 1 so that €101 + €305 + €303 + €404
has first coordinate @ and second coordinate b’ with »’ = b mod 2. Certainly
w'<1+2+3+4=MJ0M—b’<n—6Hb>bﬁmm

€101 + €307 + €303 + €404 + Us + Usyp_pr
=(ab)-0,-5+1,5+b-0")
= (a, b) .
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If b < b’, then

€101 + €20y + €303 + €404 + Vg + Vgip'—»p
=(a,b’)+(1,-6)-(1,6+b"—b)
=(a, b) . L]

LEMMA 3.5. 'Let T,v; beasinLemma3.4. Let B be the square with
vertices (+x1, +1). Then for n > 35,

B C U [( Zn: z—:,-u,-) + %T"B] ;

€1,82,...,65,€{0,1} j=1

Proof. %T” is the parallelogram with vertices
. ¢! ) : 0, 1)
+-({1,-n+£-(0,1).

2 2

The cross-section of this with x-coordinate x, is the vertical interval
[—nxe—1/2, —nxo+ 1/2] for —1/2 < xq < 1/2. Hence given (a,p) € B
pick @ € {—1,0, 1} such that — 1/2 < a +a < 1/2 and then pick b € Z such
that —n(@+a) +1/2<B+b< —n(a+a)+1/2. Since |B|<1 and
la +a|<1/2, we see |b|<;(m+1)+1<n-16 if n>35 Then
(a,B) + (a, b) € % T"B and by Lemma 3.4 we can pick €&;,...,€, such
that ). g;v;, = —(a, b), so Lemma 3.5 follows. [l
Jj=1

PROPOSITION 3.3. —1 e int w.

Proof. Since W is closed under z+ Z and z— 1/z, it suffices to show
that for |z|< 1, Imz >0, and |z + 1| sufficiently small, z is in W.
(Proposition 3.1 handles the case z € R.) Let d =z + 1. Let B be the
parallelogram with vertices + 1 + 8.

We work in a nonstandard coordinate system for C, with basis vectors 1
and 8, so B is represented by the square with vertices (+ 1, = 1). We claim
that multiplication by z is represented by the matrix 7 = ('} _(1)) up
to O(| 8]). We have

z:1=-1+96
z-8= -8+ &2

and
82 - 2(Red)S +|8|2=0

so &2 corresponds to (| 8|2, —2Re §) in our basis, and is O(| & |).
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From Lemma 3.5, it follows then that

Bc Y [( Zn: szj) + (% + O(|5|)) z"B]

8‘,...,8356{0,1} j=1

so for sufficiently small 8, we may apply Lemma 3.1 to deduce z € W. ]

We now combine all the results of this section.

THEOREM 3.1. There is an open neighborhood of {z:|z]|=1,z# 1}
contained in W.

Proof. Apply Propositions 3.2 and 3.3. [l

COROLLARY 3.1. If ze(—-1,—-1+08) for sufficiently small &
then z is a multiple zero of some 0,1 power series.

Proof. By Theorem 3.1, if § is small enough we can pick 0, 1 power series
f. and zeros z, of f, such that z, ¢ R and z, = z as n = o. By taking a
subsequence we may assume that the coefficient of z* in f, is eventually
constant for large n, for each k. By a Rouché’s Theorem argument, the pairs

of zeros {z,, 2,} of f, must converge to (at least) a double zero at z
of lim f,. [

n—o

4. W IS CONNECTED

Since W is countable, we cannot hope to prove W is connected. We prove
instead that W is connected. First we need some topological lemmas.

Give {0, 1} the discrete topology and {0, 1}© the product topology, as
usual. If v = (vy, 03, ..., U,) is a finite vector of 0’s and 1I’s, let S, be the set
of sequences in {0, 1}® which start with v. The following lemma is the key
ingredient in the connectivity proof.

LEMMA 4.1. Let Y be a topological space. Suppose f:{0,1}¢—>Y
IS a continuous map such that

(4.1) S (Su0) N f(Su1) =0

Jorall ve{0,1}", andall n>0. (Here v0 denotes the vector v with
0 appended, etc.) Then the image of f is path connected.
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