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Since z~1 e W for all z e W, it is sufficient to study z e W, | z | < 1, and in
some ways it is more natural to deal with the above power series.

Some of our methods and results are similar to those of Thierry Bousch

[5,6], whose work was brought to our attention by D. Zagier. The

report [5] proves that the closure of the set of zeros of polynomials with
coefficients 0, ±1 is connected. The thesis [6] contains, along with a variety
of other results, general methods for studying similar problems. In the area
where our work overlaps [5,6], we obtain a somewhat stronger result by

proving path connectivity.
Boris Solomyak [16] has studied zeros of power series of the form (1.9),

but with the cki k ^ 1, allowed to take any real values in the interval [0, 1].

He shows that the bound (2.4) holds there as well, and that there is a "spike"
of real zeros along the negative real axis. However, the zeros of Solomyak's
functions are substantially different from those we investigate. For example,
he shows that segments of the boundary he investigates have everywhere dense

sets of points where a tangent exists, as well as everywhere dense sets of points
with no tangent. There are also no holes in Solomyak's set of zeros.

The paper of Brenti, Royle, and Wagner [7] discusses various properties
of chromatic polynomials. While it is not directly related to our work, the

numerical evidence it presents shows that zeros of chromatic polynomials may
also exhibit fractal behavior. This may also be true for the partition function
zeros of [3].

2. Bounds and locations for zeros

A polynomial f(z)eP can have multiple zeros. If ^ ^ 1 is a d-th root of
unity, then Ç is a zero of

d - 1

g(z) £ zj,
7 0

and therefore a zero of g{zk) for any k such that d | k - 1. Hence it is a zero

of multiplicity 2 for g(z)g(zk), a polynomial in P. Higher multiplicities can

be obtained by iterating this procedure. On the other hand, we do not know

whether any z e W that is not a root of unity can be a multiple root of

any f(z) e P. There do exist power series with coefficients 0, 1 that have

double zeros z with \z\< 1, as will be shown in Section 3.

Inside a disk {z : \z | < r} for r < 1, any polynomial f(z) e P can have

only a bounded number of zeros. We prove a slightly more general result that

will be used later on.
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Proposition 2.1. Suppose that f(z) is a power series of the form
00

f(z) 1 + X °kZk ak 0, 1

k 1

Then for any r, 0 < r < 1, f(z) has

(2.1) ^ 2(-log(l - rl/2)) (- logr)

zeros in | z 1 ^ r.

Proof. We apply Jensen's theorem (Theorem 3.61 of [17]). If zi,
are the zeros in | z | < R, where r < R < 1, then we find that

1 f271

(2.2) £ log(i?/1 zj I) — log |/(Re,e) | dQ

j= 1 27t J0

since /(0) 1. Therefore, if m is the number of zeros in | z we have

I f2n

(2.3) m(\ogR-logr)^ — I log |/(Re'e) |

27t J0

Since

00

I /(Re'9) I ^ X Rk (\-R)~l
k 0

we obtain

m ^ (- log(l - R)) (logi? - logr)-1

We now choose R r1/2, and this yields the bound (2.1). (Better bounds can
be obtained by selecting R more carefully or estimating the integral of
log \f(z) I in Jensen's theorem better.)

We next consider bounds on the size of z e W. Since l/z e W for z e W,

it suffices to consider | z | ^ 1.

Theorem 2.1. Suppose that z satisfies | z \ < 1 and that f(z) 0

for some power series of the form (1.9). Then

(2.4) -Üi- ^
1 -\z\

2 - z

1 - z

and I z I ^ (p ~1, with equality if and only if z - (p_1 and f(z)
l+ z + z3 + z5+ • • • Furthermore, there exists a ô > 0 such that

if I z I < cp
~1 + 6, then z is a negative real number.
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Proof. We note that

(2.5)

where

f(z) 1 + ü akzk1 + - £ Zk +
k lk 1

2 - z

2(1 -z)
+ g(z)

(2.6)

Now for I z I < 1,

(2.7)

g(z) -XskZk ± 1 for all k
2 i i

\g(z) I ^
2(1 — | £ |)

and so we conclude that if (2.4) is violated, then /(z) 0. Equality is possible
in (2.7) only if z is real, and we easily check that for z e - 1, 1),

2 - z
1 1 - z

only at z=-(p_1. For z= - (p-1, equality holds in (2.7) when

(- l)^-1 for k ^ 1; i.e., when

/(x) 1 + X + X3 + X5 • • •

Let A {z : | z | < cp ~1}. Then z ^ (2 - z)/(l - z) maps A to the interior
of the circle one of whose diameters is

2 + cp-1 2-(p_1
.1 + (p-1 1 — cp _ 1

but z H* I z |/(1 - I z I) maps A to

— [cp, 2 + cp]

0,
<P"

[0, q>)
1 - (p-1

so (2.4) fails if z e A. Moreover, if z e 9A, (2.4) still fails unless

2 - z

1 - z
(p

z
cp — 2

cp - 1
-<P"



POLYNOMIALS WITH 0, 1 COEFFICIENTS 329

We next prove that the only z e W with | z | close to (p
~1 are negative real

numbers. Since A intersects the closed set

z: I z I ^ 0.9 and
1

2 - z

1 - z

only at * — cp "1, there exist 8i, ô2 e (0, 10 ~10) such that (2.4) fails
for z in

(2.8) S {z: \z \ ^ cp-1 + 6i, \z + (p-1 | ^ 82}

It only remains to find the possible elements of W that lie in

(2.9) r={z:|z + cp~1|<ô2,|z|<cp~1 + ôi}.
For z e T,

z
(2.10) Re 1 +fi+—^—)I 2(1-*)/ ^ cp

_1 - 10 | z + cp -1 | ^ (p _1 - 10 ~9
2(1 -z))

so if ze W, then we must have Reg(z)^ -<P_1 + 10~9. Since
I g'(z) I ^ 10 for z e T, and | g(-cp ~!) | ^ cp -1, to achieve Reg(z)
^ —cp-1 -h 10~9, we must have zk (-l)*"1 for 1 ^ k ^ 20,
say. Then

(2-11) f(z) 1 + * + z3 + • • • + z19 + h (z)

where

(2.12)

Hence for I * I r,

h(z) £ akZk ak 0 or 1

k 21

|A(z)|<
1 - r

while

(2.13) 1 + z + z3 + ••• +Z19= I,-1 ^20 1

+ z -

1 - z2
On the circle \z\ r 0.7,

|l+z-z2| |z-(p||z + <p-i|^ 0.08 • 0.9 > 0.07

so

1 - z2

(2.14)
1 + z - z2 - z2

1 - z2

0.07 - (0.7)21
^ ^ 0.03

1 + (0.7)2
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On the other hand, (0.7)21/0.3 < 0.01, so by Rouché's theorem /(z) and
(1 + z - z2 - z21)/(l - z2) have the same number of zeros inside | z | ^ 0.7.

By the earlier part of the argument, and another application of Rouché's

theorem, 1 + z - z2 and 1 + z - z2 - z21 have the same number of
zeros inside | z | ^ 0.7, namely one. Therefore /(z) has exactly one zero
inside | z |. < 0.7, and since /(z) has real coefficients, this zero has to
be real.

The argument presented above is inefficient, and shows only that some
value of 6 < 10~10 is allowable. With a little more care one could show by

an extension of the method used above that ô 0.7 - (p-1 0.081...
is allowable, so that any z e W with | z \ < 0.7 is real. In Section 6 we present
a variation of this method that uses machine computation instead of careful
estimates to establish rigorously that Ô 0.7 - cp

~1 is allowable. Numerical
evidence suggests that the minimal value of | z | over z e IF\R is about 0.734.

The method of Section 6 can be used to obtain estimates for the minimal value

of I z I over z e WAR that are as accurate as one desires.

By Proposition 3.1 of the next section, (-1, ~(p-1] Q W. Since W is

stable under z^ 1/z and closed, it follows that [ — (p, - cp-1] Q W.

In [8] it was shown that z e W implies Re(z) <3/2. Theorem 2.1

immediately leads to the bound Re(z) < 1.22 for z e W. Numerical evidence

suggests that Re(z) < 1.14 for z e W. There are z e W with Re(z) > 1.13.

The methods outlined in Section 6 can be used to obtain precise bounds.
We can analyze inequality (2.4) for z close to 1. We find that for

z I - x + iy with x and y small, x > 0, if | y | < x3/2 then (2.4) fails, so

z $ W. We next show that there are points in W which approach 1 along

trajectories tangent to the real axis.

Proposition 2.2. There exists a sequence of points zn e W such

that zn~* 1 as n-* oo and

(2.15) I Im(z„ - 1) I o(Re(z„ - 1)) as n -> oo

Proof. Consider the polynomial

with m ^ n. For n large compared to m, we will show that fm
; n (z) has a

zero near to

and Re (a - 1) - (logm) Im (a). We show that one can take m < «/(log«).

(2.16) fm,n(z) 1 + Z + ••• + Z"1"1 +

(2.17) a a m,„ exp (ni/n+ (log
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To show that „(z) has a zero ß near a am>„, let

(2.18) g(z) m +

Then g (a) 0. Consider the circle a | (10n)_1. On this circle,
I g(z) I ^ m/100, while

m - I

(2.19) |(1 +z+ +zm~l)-m|<£ 1 I

k 1

so for m o(n), by Rouché's theorem g(z) and fm,„(z) have the same

number of zeros inside the circle, namely one. This proves the claim and

answers the Conway-Parker question.

3. A NEIGHBORHOOD OF THE UNIT CIRCLE

In this section^we prove that an open neighborhood of{z:| z | 1, z ^ 1}
is contained in W.

Lemma 3.1. If B ç C is compact, n ^ 1, | z | < 1, and

(31) Be U [( £ 8/Z1) + Z*B]
e1,e2, •••> Ene(0, 1} [\i 1 / J

then every element of B is expressible in the form
oo

(3.2) Y, E-z'> S/ e {0,1}
7=1

In particular, if - 1 e B, then z e W.

Proof Given bm e B, inductively pick bm + l e B and em/e{0,1},
m ^ 0, 1 ^ i < n such that

&m ^ ^ T Znbm+i

Successive substitution yields

(M
— In \

Y Y ^miZn"
m 0 i I J
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