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ZEROS OF POLYNOMIALS WITH 0, 1 COEFFICIENTS

by A.M. ODLYZKO and B. POONEN'

ABSTRACT. Zeros of polynomials with 0,1 coefficients exhibit many
interesting features, including fractal appearance. This paper obtains bounds
for such zeros. It shows that zeros with a sufficiently large negative real part
are real. It also proves that the closure of the set of these zeros is path
connected.

1. INTRODUCTION

Zeros of polynomials with random coefficients occur in many scientific and
engineering problems. A general overview of the subject and references can
be found in the book of Bharucha-Reid and Sambandham [4], which is the
basic reference on this topic. There is a wealth of information about
distribution of zeros in the complex plane and on the real line. Almost all of
the results are for coefficients chosen independently from a common
distribution that is continuous, and usually Gaussian.

In this paper we consider zeros of polynomials with 0, 1 coefficients. These
zeros have some features that distingyish them from those of the commonly
considered families of random polynomials. Let

d
(1.1) P= {f(z):f(z)=1+ Y a;z/, a;=0o0r1 for allj}.

Jj=1
(We exclude polynomials with constant term 0, as their zeros, other than 0,
are those of polynomials of lower degree with coefficients 0, 1.) Define

(1.2) - W={zeC:f(z) =0 for some fe P}.

' Current address: Dept. of Mathematics, Univ. of California, Berkeley, Cali-
fornia 94720.
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For each degree d, there are 29-! polynomials f(z) € P of degree d, and
so W is a countable set.

There are few published results about W. In [8] it was shown that
Re(z) < 3/2 for all z € W. This was used to prove that if f(2) is a prime for
some f(z) € P, then f(z) is irreducible over the rationals. (For further results
relating zeros to irreducibility, see [12]. It is conjectured that almost all
f(z) € P are irreducible, but this is still open. This is in contrast to the case
of fixed degree polynomials when the range over which the coefficients are
allowed to run increases. There it is known that almost all polynomials are
not only irreducible, but also have S, as their Galois group. For latest results
and references on this topic, see [14].)

Our results are best illustrated by pictures of zeros. Figure 1 shows all zeros
of the polynomials with coefficients 0, 1 of degrees < 16, and with constant
term 1, except for the negative real zeros that are < —1.5. We show
that W lies between the curves

2 —
(1.3) C=14z:]z|< 1, =l Z}
1 -]z |1-z
and
1 2z — 1
(1.4) C,=14z:|z|>1, = .
lz]| -1 1 -z

The curve C, is mapped to C, by z = 1/z. This mapping takes W to itself,
since if z € W, and z is a root of f(z) € P and deg f(z) = d, then 1/zis a
root of z9 f(1/z) € P. We show that all z € W are enclosed strictly between
C, and C,. From this it follows that for all z € W,

(1.5) L <lzl<o,
¢
where
1+ 5172
(1.6) o=

is the ‘‘golden ratio.”” (The bound (1.5) has been proved independently in
different contexts by Flatto, Lagarias, and Poonen [13] and by Solomyak [16].)
We also show that the line segment [— ¢, — ¢ '] € W. However, — ¢ ¢ W
and — @~ !¢ W. Further, there is a constant 6 >0 such that if
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zeros of 0,1 polynomials of degrees <= 16
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FIGURE 1
Scatterplot of zeros z = x + iy of polynomials of degrees < 16
with constant term 1 and coefficients O and 1.
The ‘‘segments’’ along the negative real axis are created by negative real zeros.
Negative real zeros < — 1.5 are not shown.
ze W,|z|< @'+ 8, then z € R. Thus the ‘‘spike’’ along the negative real

axis that is visible in Figure 1, connecting curves C; and C, with the
exception of a small gap at — 1, is due to zeros.

Since polynomials in P have nonnegative coefficients, 1 ¢ W. However,
since { e W for every root of unity {# 1, 1€ ﬁ/, where W denotes
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zeros of 0,1 polynomials of degree 18
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FIGURE 2

Scatterplot of zeros of polynomials of degree 18
with constant term 1 and coeffficients O and 1 that are near to z = 1.

the closure of W. We answer a question posed by J.H. Conway and
Richard Parker about the behaviour of W near 1 by proving there exist
points z = x + iy € Wsuch that 0 < x — 1y = o(] y|), so that these points
come in tangent to the x-axis.

Figure 2 shows the zeros of polynomials f(x) € P of degree 18 that are
close to z = 1. Figure 3 shows zeros of polynomials f(x) € P of all degrees
< 32 that fall in a certain small region of the complex plane. Figures 4 , 5
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zeros of 0,1 polynomials of degrees <= 32
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FIGURE 3

Scatterplot of zeros of polynomials of degrees < 32 with coefficients 0 and 1.

and 6 show pictures of parts of W. The region depicted in Figure 4 is the same
as that of Figure 3. Section 6 explains how these pictures were created.

Theorem 2.1 of Section 2, which says that W is contained between
C, and C,, is not best possible. The only points of W that are in C,u (G,
are 1, — @, —o~'. In Section 6 we will show how to obtain more precise
bounds for W. However, because of the fractal nature of W, there is no simple
description of its shape.
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zeros of power series with 0,1 coefficients
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FiGURE 4

Section of W. The same region, with points from W displayed, is shown in Figure 3.
Black denotes points z € W.

Many features visible in the graphs can be explained (at least heuristically,
and often rigorously) by using known results or methods. When one graphs
zeros of any single polynomial with coefficients 0 and 1, most of them are close
to the unit circle| z | = 1 and they are equidistributed in angles, so that the first
quadrant, for example, has close to 1/4 of the total. This phenomenon is true
for all polynomials whose coefficients do not vary much, as follows from
results originating with Erdos and Turdn [11]. For statements and references
to general results, see [4].
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zeros of power series with 0,1 coefficients
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FIGURE 5

Section of ﬁ’, the set of zeros of power seriei with 0, 1 coefficients
with black denoting z € W.

The expected number of real roots of a random polynomial (which have
to be negative for f(z) € P) grows logarithmically with », as was first noted
by Kac and Rice (see [4]). Furthermore, the variance is small.

In Figures 1 and 2, there is a perceptible clustering of zeros. This is a
reflection of the ‘‘averaging phenomenon’’ for roots of random polynomials

[4, 15], and again is not special to 0, 1 coefficients. The ‘‘average’ of the
polynomials of degree » that are in P is
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zeros of power series with 0,1 coefficients
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FIGURE 6

Section of W. This is an enlargement by a factor of 80 of a section of Figure 3,
showing some of the holes contained in W.

1)z~1 1__2 qn_—v_+_2
(1.7) gz)=z"+1+ - E z* =( 2K N ;
2 k=1 2(1 = 2)

and on average the zeros of f(z) € P tend to cluster near the zeros of g(z).

)

Figures 1 and 2 show several large ‘‘holes,’”” which contain either just one
or no zeros. These holes are usually centered at algebraic integers o of low
degree and small height (i.e., algebraic integers o that satisfy polynomial

equations with small integral coefficients). The most prominent of the holes
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are at the roots of unity, such as —1 and /. As one computes Zeros of
polynomials f(z) € P of increasing degrees, the large holes in Figures 1
and 2 fill up. However, there are other holes, such as those visible in
Figures 3-6, that are free of zeros even when the degree increases.

We show in Section 3 that there is an open nei_ghborhood of
{z:]z|=1,z# 1} that is in W. In Section 4 we prove that W is connected.
The more involved argument in Section 5 proves that W is path connected.
Since the unit circle is contained in ﬁ/, but 0 ¢ W, Wis clearly not simply
connected. Numerical experiments suggest that W has “‘holes” in it besides
the big hole containing 0. (That is, C\ W has more than 2 connected
components.) In particular, the disk of radius 10~° centered at
—0.69098 + 0.33062i appears to be part of such a hole. This hole and some
neighboring ones are pictured in Figures 5 and 6. Other, even larger holes,
can be seen in Figures 3 and 4.

W has a fractal appearance that is reminiscent of some of the Julia
sets [1, 10]. In Section 6 we sketch arguments that explain how this arises.
However, we do not have estimates for such interesting parameters as the
Hausdorff dimension of the boundary of w.

In contrast to our result that W is path connected, the Mandelbrot
set is only known to be connected, although it is conjectured to be path
connected [1, 10]. Our methods are simpler than those used to study the
connectedness of the Mandelbrot set. They are similar to the techniques
developed for investigating iterated function systems [1].

Results similar to those for polynomials with 0, 1 coefficients can also be
obtained for other families of polynomials with a small set of possible
coefficients. For example, for =+ 1 coefficients, pictures of zeros are
qualitatively similar to those of 0,1 polynomials. There is symmetry about
the imaginary axis as well as the real axis (corresponding to changing the
variable z to — z). There are two ‘‘spikes’’ of zeros along the real axis that
fill the intervals [—2, — 1/2] and [1/2, 2], while there are no other zeros
in|z|<1/2+8or|z|>2— 8 for some & > 0. For polynomials with cubic
roots of unity as coefficients, there are no ‘‘spikes’’, but the zeros still have
a fractal appearance.

The set

(1.8) Wniz:|z|< 1}

is the set of zeros of power series

(1.9) f(z) =1+

178

akzks ak=00r1.

k=1
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Since z~! € W for all z € W, it is sufficient to study z € W,|z|< 1, and in
some ways it is more natural to deal with the above power series.

Some of our methods and results are similar to those of Thierry Bousch
[5,6], whose work was brought to our attention by D. Zagier. The
report [5] proves that the closure of the set of zeros of polynomials with
coefficients 0, + 1 is connected. The thesis [6] contains, along with a variety
of other results, general methods for studying similar problems. In the area
where our work overlaps [5, 6], we obtain a somewhat stronger result by
proving path connectivity.

Boris Solomyak [16] has studied zeros of power series of the form (1.9),
but with the ¢,, kK > 1, allowed to take any real values in the interval [0, 1].
He shows that the bound (2.4) holds there as well, and that there is a ‘‘spike”’
of real zeros along the negative real axis. However, the zeros of Solomyak’s
functions are substantially different from those we investigate. For example,
he shows that segments of the boundary he investigates have everywhere dense
sets of points where a tangent exists, as well as everywhere dense sets of points
with no tangent. There are also no holes in Solomyak’s set of zeros.

The paper of Brenti, Royle, and Wagner [7] discusses various properties
of chromatic polynomials. While it is not directly related to our work, the
numerical evidence it presents shows that zeros of chromatic polynomials may
also exhibit fractal behavior. This may also be true for the partition function
zeros of [3].

2. BOUNDS AND LOCATIONS FOR ZEROS

A polynomial f(z) € P can have multiple zeros. If  # 1 is a d-th root of
unity, then C is a zero of

d-1
gy =) 2/,
j=0

and therefore a zero of g(z*) for any k such that d | kK — 1. Hence it is a zero
of multiplicity 2 for g(z) g(z*), a polynomial in P. Higher multiplicities can
be obtained by iterating this procedure. On the other hand, we do not know
whether any z € W that is not a root of unity can be a multiple root of
any f(z) € P. There do exist power series with coefficients 0, 1 that have
double zeros z with ]z i < 1, as will be shown in Section 3.

Inside a disk {z:|z|< r} for r < 1, any polynomial f(z) € P can have
only a bounded number of zeros. We prove a slightly more general result that
will be used later on.
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