Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 39 (1993)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ZEROS OF POLYNOMIALS WITH 0, 1 COEFFICIENTS
Autor: Odlyzko, A. M. / Poonen, B.

DOl: https://doi.org/10.5169/seals-60430

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-60430
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 39 (1993), p. 31 7-348

ZEROS OF POLYNOMIALS WITH 0, 1 COEFFICIENTS

by A.M. ODLYZKO and B. POONEN'

ABSTRACT. Zeros of polynomials with 0,1 coefficients exhibit many
interesting features, including fractal appearance. This paper obtains bounds
for such zeros. It shows that zeros with a sufficiently large negative real part
are real. It also proves that the closure of the set of these zeros is path
connected.

1. INTRODUCTION

Zeros of polynomials with random coefficients occur in many scientific and
engineering problems. A general overview of the subject and references can
be found in the book of Bharucha-Reid and Sambandham [4], which is the
basic reference on this topic. There is a wealth of information about
distribution of zeros in the complex plane and on the real line. Almost all of
the results are for coefficients chosen independently from a common
distribution that is continuous, and usually Gaussian.

In this paper we consider zeros of polynomials with 0, 1 coefficients. These
zeros have some features that distingyish them from those of the commonly
considered families of random polynomials. Let

d
(1.1) P= {f(z):f(z)=1+ Y a;z/, a;=0o0r1 for allj}.

Jj=1
(We exclude polynomials with constant term 0, as their zeros, other than 0,
are those of polynomials of lower degree with coefficients 0, 1.) Define

(1.2) - W={zeC:f(z) =0 for some fe P}.

' Current address: Dept. of Mathematics, Univ. of California, Berkeley, Cali-
fornia 94720.
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For each degree d, there are 29-! polynomials f(z) € P of degree d, and
so W is a countable set.

There are few published results about W. In [8] it was shown that
Re(z) < 3/2 for all z € W. This was used to prove that if f(2) is a prime for
some f(z) € P, then f(z) is irreducible over the rationals. (For further results
relating zeros to irreducibility, see [12]. It is conjectured that almost all
f(z) € P are irreducible, but this is still open. This is in contrast to the case
of fixed degree polynomials when the range over which the coefficients are
allowed to run increases. There it is known that almost all polynomials are
not only irreducible, but also have S, as their Galois group. For latest results
and references on this topic, see [14].)

Our results are best illustrated by pictures of zeros. Figure 1 shows all zeros
of the polynomials with coefficients 0, 1 of degrees < 16, and with constant
term 1, except for the negative real zeros that are < —1.5. We show
that W lies between the curves

2 —
(1.3) C=14z:]z|< 1, =l Z}
1 -]z |1-z
and
1 2z — 1
(1.4) C,=14z:|z|>1, = .
lz]| -1 1 -z

The curve C, is mapped to C, by z = 1/z. This mapping takes W to itself,
since if z € W, and z is a root of f(z) € P and deg f(z) = d, then 1/zis a
root of z9 f(1/z) € P. We show that all z € W are enclosed strictly between
C, and C,. From this it follows that for all z € W,

(1.5) L <lzl<o,
¢
where
1+ 5172
(1.6) o=

is the ‘‘golden ratio.”” (The bound (1.5) has been proved independently in
different contexts by Flatto, Lagarias, and Poonen [13] and by Solomyak [16].)
We also show that the line segment [— ¢, — ¢ '] € W. However, — ¢ ¢ W
and — @~ !¢ W. Further, there is a constant 6 >0 such that if
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zeros of 0,1 polynomials of degrees <= 16

0
e ]
0
o
S
o
ol
S -
e ]
w
- I I I [ T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X
FIGURE 1
Scatterplot of zeros z = x + iy of polynomials of degrees < 16
with constant term 1 and coefficients O and 1.
The ‘‘segments’’ along the negative real axis are created by negative real zeros.
Negative real zeros < — 1.5 are not shown.
ze W,|z|< @'+ 8, then z € R. Thus the ‘‘spike’’ along the negative real

axis that is visible in Figure 1, connecting curves C; and C, with the
exception of a small gap at — 1, is due to zeros.

Since polynomials in P have nonnegative coefficients, 1 ¢ W. However,
since { e W for every root of unity {# 1, 1€ ﬁ/, where W denotes
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zeros of 0,1 polynomials of degree 18

0.0

0.4 0.6 0.8 1.0 1.2

X

FIGURE 2

Scatterplot of zeros of polynomials of degree 18
with constant term 1 and coeffficients O and 1 that are near to z = 1.

the closure of W. We answer a question posed by J.H. Conway and
Richard Parker about the behaviour of W near 1 by proving there exist
points z = x + iy € Wsuch that 0 < x — 1y = o(] y|), so that these points
come in tangent to the x-axis.

Figure 2 shows the zeros of polynomials f(x) € P of degree 18 that are
close to z = 1. Figure 3 shows zeros of polynomials f(x) € P of all degrees
< 32 that fall in a certain small region of the complex plane. Figures 4 , 5
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zeros of 0,1 polynomials of degrees <= 32
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FIGURE 3

Scatterplot of zeros of polynomials of degrees < 32 with coefficients 0 and 1.

and 6 show pictures of parts of W. The region depicted in Figure 4 is the same
as that of Figure 3. Section 6 explains how these pictures were created.

Theorem 2.1 of Section 2, which says that W is contained between
C, and C,, is not best possible. The only points of W that are in C,u (G,
are 1, — @, —o~'. In Section 6 we will show how to obtain more precise
bounds for W. However, because of the fractal nature of W, there is no simple
description of its shape.
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zeros of power series with 0,1 coefficients
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FiGURE 4

Section of W. The same region, with points from W displayed, is shown in Figure 3.
Black denotes points z € W.

Many features visible in the graphs can be explained (at least heuristically,
and often rigorously) by using known results or methods. When one graphs
zeros of any single polynomial with coefficients 0 and 1, most of them are close
to the unit circle| z | = 1 and they are equidistributed in angles, so that the first
quadrant, for example, has close to 1/4 of the total. This phenomenon is true
for all polynomials whose coefficients do not vary much, as follows from
results originating with Erdos and Turdn [11]. For statements and references
to general results, see [4].
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zeros of power series with 0,1 coefficients
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FIGURE 5

Section of ﬁ’, the set of zeros of power seriei with 0, 1 coefficients
with black denoting z € W.

The expected number of real roots of a random polynomial (which have
to be negative for f(z) € P) grows logarithmically with », as was first noted
by Kac and Rice (see [4]). Furthermore, the variance is small.

In Figures 1 and 2, there is a perceptible clustering of zeros. This is a
reflection of the ‘‘averaging phenomenon’’ for roots of random polynomials

[4, 15], and again is not special to 0, 1 coefficients. The ‘‘average’ of the
polynomials of degree » that are in P is
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zeros of power series with 0,1 coefficients
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FIGURE 6

Section of W. This is an enlargement by a factor of 80 of a section of Figure 3,
showing some of the holes contained in W.

1)z~1 1__2 qn_—v_+_2
(1.7) gz)=z"+1+ - E z* =( 2K N ;
2 k=1 2(1 = 2)

and on average the zeros of f(z) € P tend to cluster near the zeros of g(z).

)

Figures 1 and 2 show several large ‘‘holes,’”” which contain either just one
or no zeros. These holes are usually centered at algebraic integers o of low
degree and small height (i.e., algebraic integers o that satisfy polynomial

equations with small integral coefficients). The most prominent of the holes
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are at the roots of unity, such as —1 and /. As one computes Zeros of
polynomials f(z) € P of increasing degrees, the large holes in Figures 1
and 2 fill up. However, there are other holes, such as those visible in
Figures 3-6, that are free of zeros even when the degree increases.

We show in Section 3 that there is an open nei_ghborhood of
{z:]z|=1,z# 1} that is in W. In Section 4 we prove that W is connected.
The more involved argument in Section 5 proves that W is path connected.
Since the unit circle is contained in ﬁ/, but 0 ¢ W, Wis clearly not simply
connected. Numerical experiments suggest that W has “‘holes” in it besides
the big hole containing 0. (That is, C\ W has more than 2 connected
components.) In particular, the disk of radius 10~° centered at
—0.69098 + 0.33062i appears to be part of such a hole. This hole and some
neighboring ones are pictured in Figures 5 and 6. Other, even larger holes,
can be seen in Figures 3 and 4.

W has a fractal appearance that is reminiscent of some of the Julia
sets [1, 10]. In Section 6 we sketch arguments that explain how this arises.
However, we do not have estimates for such interesting parameters as the
Hausdorff dimension of the boundary of w.

In contrast to our result that W is path connected, the Mandelbrot
set is only known to be connected, although it is conjectured to be path
connected [1, 10]. Our methods are simpler than those used to study the
connectedness of the Mandelbrot set. They are similar to the techniques
developed for investigating iterated function systems [1].

Results similar to those for polynomials with 0, 1 coefficients can also be
obtained for other families of polynomials with a small set of possible
coefficients. For example, for =+ 1 coefficients, pictures of zeros are
qualitatively similar to those of 0,1 polynomials. There is symmetry about
the imaginary axis as well as the real axis (corresponding to changing the
variable z to — z). There are two ‘‘spikes’’ of zeros along the real axis that
fill the intervals [—2, — 1/2] and [1/2, 2], while there are no other zeros
in|z|<1/2+8or|z|>2— 8 for some & > 0. For polynomials with cubic
roots of unity as coefficients, there are no ‘‘spikes’’, but the zeros still have
a fractal appearance.

The set

(1.8) Wniz:|z|< 1}

is the set of zeros of power series

(1.9) f(z) =1+

178

akzks ak=00r1.

k=1
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Since z~! € W for all z € W, it is sufficient to study z € W,|z|< 1, and in
some ways it is more natural to deal with the above power series.

Some of our methods and results are similar to those of Thierry Bousch
[5,6], whose work was brought to our attention by D. Zagier. The
report [5] proves that the closure of the set of zeros of polynomials with
coefficients 0, + 1 is connected. The thesis [6] contains, along with a variety
of other results, general methods for studying similar problems. In the area
where our work overlaps [5, 6], we obtain a somewhat stronger result by
proving path connectivity.

Boris Solomyak [16] has studied zeros of power series of the form (1.9),
but with the ¢,, kK > 1, allowed to take any real values in the interval [0, 1].
He shows that the bound (2.4) holds there as well, and that there is a ‘‘spike”’
of real zeros along the negative real axis. However, the zeros of Solomyak’s
functions are substantially different from those we investigate. For example,
he shows that segments of the boundary he investigates have everywhere dense
sets of points where a tangent exists, as well as everywhere dense sets of points
with no tangent. There are also no holes in Solomyak’s set of zeros.

The paper of Brenti, Royle, and Wagner [7] discusses various properties
of chromatic polynomials. While it is not directly related to our work, the
numerical evidence it presents shows that zeros of chromatic polynomials may
also exhibit fractal behavior. This may also be true for the partition function
zeros of [3].

2. BOUNDS AND LOCATIONS FOR ZEROS

A polynomial f(z) € P can have multiple zeros. If  # 1 is a d-th root of
unity, then C is a zero of

d-1
gy =) 2/,
j=0

and therefore a zero of g(z*) for any k such that d | kK — 1. Hence it is a zero
of multiplicity 2 for g(z) g(z*), a polynomial in P. Higher multiplicities can
be obtained by iterating this procedure. On the other hand, we do not know
whether any z € W that is not a root of unity can be a multiple root of
any f(z) € P. There do exist power series with coefficients 0, 1 that have
double zeros z with ]z i < 1, as will be shown in Section 3.

Inside a disk {z:|z|< r} for r < 1, any polynomial f(z) € P can have
only a bounded number of zeros. We prove a slightly more general result that
will be used later on.
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PROPOSITION 2.1. Suppose that f(z) is a power series of the form

f@ =1+ Y az¥, ar=0,1.

k=1

Then for any r,0<r <1, f(z) has
(2.1 < 2(=log(1 —r'?))(—logr)~!
zeros in |z|<r.

Proof. We apply Jensen’s theorem (Theorem 3.61 of [17]). If zy, ..., 2,
are the zeros in | z| < R, where r < R < 1, then we find that

27
n 1 )
(2.2) Y log(R/|z;]) = —g log|f(Re'®)|db ,
j=1 21 Jo

since f(0) = 1. Therefore, if m is the number of zeros in |z |< r, we have
1 2n

(2.3) m(logR — logr) < P s log | f(Re?®) | d0 .
T Jo

Since

f®e®)|< T RF= (1-R)-1,
k=20

we obtain
m< (—log(l —R))(logR —logr)~!.

We now choose R = r!/2, and this yields the bound (2.1). (Better bounds can
be obtained by selecting R more carefully or estimating the integral of
log | f(z) | in Jensen’s theorem better.) [

We next consider bounds on the size of z € W. Since 1/z € W for z € W,
it suffices to consider |z|< 1.

THEOREM 2.1. Suppose that z satisfies |z|< 1 and that f(z) =0
Jor some power series of the form (1.9). Then

|z | 2 -2
(2.4) = p
1-|z|] |1-2
and |z|>@-', with equality if and only if z= —0-' and f(z)
=1+z+23+2°+ ---. Furthermore, there exists a & >0 such that

if |z|<o-'+38, then z isa negative real number.
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Proof. We note that

[o o] l oo
f@=1+ Y azk=1+- Y z¢+ g(z)
k=1 2 k=1

(2.5) _
=—— + g(2)

2(1 —2)
where

1 (o]
(26) g(Z) = — Z Er3" , Ep = + 1 for all k.

2 k=1
Now for |z|< 1,

| z|
(2.7) lg(z)| < ;
2(1 -1z

and so we conclude that if (2.4) is violated, then f(z) # 0. Equality is possible
in (2.7) only if z is real, and we easily check that for z € (— 1, 1),

2 —Z
1 -z

1 —|z]

only at z= —¢~!. For z= —¢~!, equality holds in (2.7) when
gr=(—1* 1 for k >1; 1i.e., when

JX)=1+x+x34+x> -

Let A ={z:|z|< ¢-!}. Thenz~ (2 — 2)/(1 — z) maps A to the interior
of the circle one of whose diameters is
2+ 2-0"!
1+ 1-¢-!

] = [p,2 + ¢]

but z—|z|/(1 —|z]|) maps A to
(p_l
0, —| =10,
[ 1 - (p“) ?
so (2.4) fails if z € A. Moreover, if z € 0A, (2.4) still fails unless

2—2z
=0
1 -z
¢ —2 .
Z:———:—(p .
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We next prove that the only z € W with | z | close to @ ! are negative real
numbers. Since A intersects the closed set

K 2~%

=
1 -]z|

only at z= — ¢!, there exist &;, 8, € (0, 10-19) such that (2.4) fails

for z in

{z:|z|<0.9 and

1 -1z

(2.8) S={z:]z|<0 1+ 8,|z+01|>8;}.
It only remains to find the possible elements of W that lie in
(2.9) T={z:|z+ ¢ 1< 8,|z|<o '+ 8}.

For z € T,

(2.10) Re(1+ )>(p—1—10|z+(p—1|>(p—1—10‘9,

2(1-2)

so if ze W, then we must have Reg(z) < —¢~!+ 10-9. Since
|g’(2)|< 10 for ze 7, and |g(—¢-!)| <¢-!, to achieve Re g(z)

S -¢07'+10°° we must have g = (-1 for 1<k<20,
say. Then
(2.11) f@D=1+z+2+ - + 2%+ h(z),
where
(2.12) h(z)= Y apz*, ar=0or1.
k=21

Hence for |z|=r,

21
|h(z) | < —,
1-r

while

1 — ~»20
(213) 1+Z+Z3+...+Z19:1+Z1 v =1+Z_ZZ__Z21

1 — z2 1 — z2

On the circle |z | = r = 0.7,
[ 1+z-z22=]z-0flz+¢-1]>0.08-0.9>0.07,
SO

_, 007 — (0.7)”
T 1+ (0.7)2

(2.14)

’Hz—zz—z21

>
T > 0.03 .
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On the other hand, (0.7)2'/0.3 < 0.01, so by Rouché’s theorem f(z) and
(1 +z—z2—z%)/(1 — z2) have the same number of zeros inside | z | < 0.7.
By the earlier part of the argument, and another application of Rouché’s
theorem, 1+ z —z? and 1 + z — z? — z?! have the same number of
zeros inside |z|< 0.7, namely one. Therefore f(z) has exactly one zero

inside |z]< 0.7, and since f(z) has real coefficients, this zero has to
be real. [

The argument presented above is inefficient, and shows only that some
value of & < 1019 is allowable. With a little more care one could show by
an extension of the method used above that 6 = 0.7 — ¢ ~! = 0.081...
is allowable, so that any z € W with | z | < 0.7 is real. In Section 6 we present
a variation of this method that uses machine computation instead of careful
estimates to establish rigorously that 8 = 0.7 — ¢ ~! is allowable. Numerical
evidence suggests that the minimal value of | z | over z € W\R is about 0.734.
The method of Section 6 can be used to obtain estimates for the minimal value
of | z| over z € W\R that are as accurate as one desires.

By Proposition 3.1 of the next section, (— 1, —¢ 1] C w. Since W is
stable under z— 1/z and closed, it follows that [— ¢, —¢ '] C W.

In [8] it was shown that z € W implies Re(z) < 3/2. Theorem 2.1
immediately leads to the bound Re(z) < 1.22 for z € W. Numerical evidence
suggests that Re(z) < 1.14 for z € W. There are z € W with Re(z) > 1.13.
The methods outlined in Section 6 can be used to obtain precise bounds.

We can analyze inequality (2.4) for z close to 1. We find that for
z=1—x+ iy with x and y small, x > 0, if | y | < x3/2 then (2.4) fails, so
z ¢ W. We next show that there are points in W which approach 1 along
trajectories tangent to the real axis.

PROPOSITION 2.2. T;zere exists a sequence of points z,€ W such
that z,—1 as n— o and
(2.15) |Im(z,— 1)|=o(Re(z,— 1)) as n— .

Proof. Consider the polynomial
(2.16) Jmon@)=1+2+ - +zm 1+ 2"

with m < n. For n large compared to m, we will show that f,, ,(z) has a
zero near to

(2.17) o = Uy, = exp(ni/n + (log m)/n) ,

and Re(o — 1) ~ (log m) Im (o). We show that one can take m < n/(log n).
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To show that f,, ,(z) has a zero B near a = ., ,, let
(2.18) g(z)=m+ z7".

Then g(a) = 0. Consider the circle |z — a|= (10n)~!. On this circle,
| g(z) | > m/100, while

m—1

.19 |Q+z+ - +z"H)-m|< ) |zF-1]|=0@m¥n),
k=1

so for m = o(n), by Rouché’s theorem g(z) and f,, »(z) have the same
number of zeros inside the circle, namely one. This proves the claim and
answers the Conway-Parker question. [

3. A NEIGHBORHOOD OF THE UNIT CIRCLE

In this section we prove that an open neighborhood of {z: lz|=1,z# 1}
is contained in W.

LEMMA 3.1. If BC C iscompact, n>1,|z|<1, and

3.1) Bc U [( ¥ a,-zf) n an] ,

€1,82, ..., 85, € {0, 1} i=1

then every element of B is expressible in the form
(3.2) Y &z, &€{0,1}.

In particular, if —1e€ B, then ze€ w.

Proof. Given b, € B, inductively pick b,.; € B and ¢,; € {0, 1},
m>0,1< i< n such that

bm = ( Z Smizi) + anm_,_l .

i=1

Successive substitution yields

m=0 i=1

M-1 n
by = ( Z E 8mizmn+i) +ZMnbM-
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Since B is compact, z4" by, — 0 as M — o, so
<o n
b0= Z Z 8mi‘zmn_*.i7
m=0 i=1

which is the desired form. [

PROPOSITION 3.1. If zeR, —1<z< —¢~!, then ze€ W.

Proof. Let B=[-1, —z]. Then, ‘since ~ 1 <z< —¢~! implies
7z —z>< — 1, we have

(z+zB)uzB =[z-2%0]v [-2z2, —Z]
= [z 2%, — 2]
2[-1, -z]
=B.
We now apply Lemma 3.1 with » = 1, and conclude that z € w. []
LEMMA 3.2. If BcC C is compact, —1e€eB,n>1,xeC and

(3.3) B C int U [( i 8,-xi) + x"B] ,

€1, ..., €p €{0, 1} i=1

where intS denotes the interior of S, then there is a neighborhood N
of x such that

Nn{z:|z|<1}c w.

Proof. Condition (3.3) implies that (3.1) holds for z in a neighborhood
of x, so Lemma 3.2 follows from Lemma 3.1. [

LEMMA 3.3. If B={z:|z|<R} for some R>1,n>1|x|=1
and |

(3.4) Bcint U (x/+ B),
Jj=1
then
X e int W .
Proof. Since W contains the unit circle and is closed under z~ 1/z,
this follows trivially from Lemma 3.2. [

PROPOSITION 3.2. If |x|=1,x+# =1, then xeintW.
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Proof. We claim that if R > 2, then the condition (3.4) of Lemma 3.3
holds for n large enough. If x = exp(nia) and a is irrational, then by
Kronecker’s theorem {x/:j > 1} is dense on the unit circle, and then for
every & > 0, the disk of radius R + 1 — § is contained in the union on the
right side of (3.4) for n large enough. If a is rational, then the {x/:j > 1} are
the vertices of a regular k-gon, and k£ > 3 since x # =+ 1. In that case the union
on the right side of (3.4) contains a disk of radius r, where r, 1, and R are
the sides of a triangle, and the angle between the sides of lengths » and 1 is
n/k. Therefore, by the Law of Cosines,

R2=1+r?-2rcos(n/k),
and so
r = cos(n/k) + (cos?(n/k) + R2 — 1)1/2,
Since cos(n/k) = cos(n/3), we find that
r=1/4+ (R*-3/49)V2>R + 1/20

for R > 2, since (R? — 3/4)/2 — R is an increasing function of R. [

Proving — 1 € int W is trickier, because it will not do to take B as a disc
of radius > 1 if Im(z) is small compared to Re(z + 1). We will instead

take B as a parallelogram that becomes flatter and flatter as Im z — 0. The
following two lemmas will be used in verifying the condition of Lemma 3.1.

LEMMA 3.4. Let T= (") _}). Let v;=Ti(}) = (=17(’,). Then
for n>16

{ Zn: EiV;lE; € {O, 1}}

Jj=1
contains {(,):a,beZ,|a|<1,|b|<n - 16}.

Proof. Given such (§), first pick €,, €, so that &,0, + €,0, has first
coordinate a. Next pick €3 = &, = 0 or 1 so that €101 + €305 + €303 + €404
has first coordinate @ and second coordinate b’ with »’ = b mod 2. Certainly
w'<1+2+3+4=MJ0M—b’<n—6Hb>bﬁmm

€101 + €307 + €303 + €404 + Us + Usyp_pr
=(ab)-0,-5+1,5+b-0")
= (a, b) .
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If b < b’, then

€101 + €20y + €303 + €404 + Vg + Vgip'—»p
=(a,b’)+(1,-6)-(1,6+b"—b)
=(a, b) . L]

LEMMA 3.5. 'Let T,v; beasinLemma3.4. Let B be the square with
vertices (+x1, +1). Then for n > 35,

B C U [( Zn: z—:,-u,-) + %T"B] ;

€1,82,...,65,€{0,1} j=1

Proof. %T” is the parallelogram with vertices
. ¢! ) : 0, 1)
+-({1,-n+£-(0,1).

2 2

The cross-section of this with x-coordinate x, is the vertical interval
[—nxe—1/2, —nxo+ 1/2] for —1/2 < xq < 1/2. Hence given (a,p) € B
pick @ € {—1,0, 1} such that — 1/2 < a +a < 1/2 and then pick b € Z such
that —n(@+a) +1/2<B+b< —n(a+a)+1/2. Since |B|<1 and
la +a|<1/2, we see |b|<;(m+1)+1<n-16 if n>35 Then
(a,B) + (a, b) € % T"B and by Lemma 3.4 we can pick €&;,...,€, such
that ). g;v;, = —(a, b), so Lemma 3.5 follows. [l
Jj=1

PROPOSITION 3.3. —1 e int w.

Proof. Since W is closed under z+ Z and z— 1/z, it suffices to show
that for |z|< 1, Imz >0, and |z + 1| sufficiently small, z is in W.
(Proposition 3.1 handles the case z € R.) Let d =z + 1. Let B be the
parallelogram with vertices + 1 + 8.

We work in a nonstandard coordinate system for C, with basis vectors 1
and 8, so B is represented by the square with vertices (+ 1, = 1). We claim
that multiplication by z is represented by the matrix 7 = ('} _(1)) up
to O(| 8]). We have

z:1=-1+96
z-8= -8+ &2

and
82 - 2(Red)S +|8|2=0

so &2 corresponds to (| 8|2, —2Re §) in our basis, and is O(| & |).
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From Lemma 3.5, it follows then that

Bc Y [( Zn: szj) + (% + O(|5|)) z"B]

8‘,...,8356{0,1} j=1

so for sufficiently small 8, we may apply Lemma 3.1 to deduce z € W. ]

We now combine all the results of this section.

THEOREM 3.1. There is an open neighborhood of {z:|z]|=1,z# 1}
contained in W.

Proof. Apply Propositions 3.2 and 3.3. [l

COROLLARY 3.1. If ze(—-1,—-1+08) for sufficiently small &
then z is a multiple zero of some 0,1 power series.

Proof. By Theorem 3.1, if § is small enough we can pick 0, 1 power series
f. and zeros z, of f, such that z, ¢ R and z, = z as n = o. By taking a
subsequence we may assume that the coefficient of z* in f, is eventually
constant for large n, for each k. By a Rouché’s Theorem argument, the pairs

of zeros {z,, 2,} of f, must converge to (at least) a double zero at z
of lim f,. [

n—o

4. W IS CONNECTED

Since W is countable, we cannot hope to prove W is connected. We prove
instead that W is connected. First we need some topological lemmas.

Give {0, 1} the discrete topology and {0, 1}© the product topology, as
usual. If v = (vy, 03, ..., U,) is a finite vector of 0’s and 1I’s, let S, be the set
of sequences in {0, 1}® which start with v. The following lemma is the key
ingredient in the connectivity proof.

LEMMA 4.1. Let Y be a topological space. Suppose f:{0,1}¢—>Y
IS a continuous map such that

(4.1) S (Su0) N f(Su1) =0

Jorall ve{0,1}", andall n>0. (Here v0 denotes the vector v with
0 appended, etc.) Then the image of f is path connected.
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Proof. Let w(0) = f(x;) and w(1) = f(x;) be elements of the image we
wish to connect by a path. Find x;,,, xj,, € {0, 1} such that x;, x;,, have
the same first coordinate, and x;,,, x; have the same first coordinate and
SCei2) = f(x1,,). df x{,x; have the same first coordinate, take
X1/2 = Xi,, = X; otherwise apply the hypothesis (4.1) with v as the empty
vector.) Let w(1/2) be this common value.

Next find x4, x{,, € {0,1}®, using the same argument, such that
X, X174 agree in the first two coordinates, xi,,, X;,, agree in the first two
coordinates, and f(x;,4) = f(xi,4). Let w(1/4) be this common value. Do
the analogous thing at 3/4.

By induction, we may continue to define Xy/zn, X};/55, w(d/2") at all
dyadic rationals d/2" in [0, 1], such that x,,, and x(.1)/2» agree in the
first n coordinates and

w(d/2") = f(Xasan) = f(Xp2n)

By induction, we see that all the x; with g € [d/2", (d + 1)/2") agree in the
first n coordinates. Hence for

r=) g2 7'e[0,1], ¢ €{0,1}
i=1

not a dyadic rational, we may define

x,=x, = lim x., where o(n)= ) &2/,
n— o i=1
and w(r) = f(x,). Then w maps [d/2",(d + 1)/2"] into f(S,) where
v e {0,1}" is the first n coordinates of x., r € [d/2",(d + 1)/2") and of
X(d+1)/2n -

We now show that w is continuous at r € [0, 1]. Let U be an open set
of Y containing w(r). Then f~-!(U) contains S, and S, for some finite
substrings v, v’ of x,, x, respectively, by continuity of f. By the last sentence
of the previous paragraph it follows that

w-1(U) 2 W—l(f(Su) % f(Sv’))

will contain a neighborhood of r.
Thus w: [0, 1] — image (f) is a continuous path, and image (f) is path
connected. [

Let M be a topological space. Give M” the product topology and let the
symmetric group S, act on M" by permuting the coordinates. The space
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M"/S,, which parameterizes n-element multisets, can be given the quotient
topology.

LEMMA 4.2. If A c M"/S, is connected, and the multiset {P, P, ..., P}
isin A for some PeM, then the subset B C M of all coordinates
of points in A is connected.

Proof. Suppose not. Then there are open sets U, V' € M such that U n B

and V N B are disjoint nonempty sets with union B. Without loss of generality,
P e U. Let

U=UxUX"---xU,

Vi=(VXMXMX- -+ XM)
UMXVXMX- -+ XM)

UMXMXMX- - xXV).

Then U’, V' are open sets in M” which are stable under S,, so they project
to open sets U”’, V" in M"/S,. Also A C U” u V" since a point in A must
have all coordinates in U, or else at least one coordinate in B\U C V.
Furthermore P € U n A, and V" n A is nonempty also, since at least one
point of A has a coordinate in V, since V N B # (. Finally
U’'NnV"”"nNnA=0, since it is not possible for a point of 4 to have all
coordinates in U, yet have some coordinate in V. This contradicts the
connectedness of 4. [

THEOREM 4.1. W is connected.
Proof. First we show that for 8§ € (0, 1),
Ws=Wniz:|z|]< 1) uiz:1 -8 <]z 1}

is connected. The idea is to apply Lemma 4.1 to the function f which assigns
to (g1, €4, ...) the set of zeros of

1 +ez+8e22+ -

inside {z:|z|< 1 — 8}. To make a continuous map of this requires some
manipulation.

By Jensen’s theorem, as was shown in Section 2, there is an upper
bound » on the number of zeros that a power series with 0, 1 coefficients can
have inside {z:|z|<1—8}. Let M be {z:]z|< 1} with the annulus
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{z:1 -8 <|z|< 1} shrunk to a point P. (Therefore M is topologically

a sphere.) To each power series 1 + ), €;z', €; € {0, 1}, we assign the set
i=1

of zeros inside {z:|z|< 1 — 8}, (counted with multiplicities) and throw in
extra copies of the point P as necessary to bring the total number of points
to n. Since the order of these n elements of M is unspecified, we obtain a point
of M"/S,. Let f((g,, €,, ...)) be this point.

We claim that this map

f:{0,1}® > M"/S,

is continuous. This follows easily from Rouché’s theorem; if two power series
agree in the first m coordinates for m sufficiently large then their zeros
inside {z:|z]|< 1 — 8} will be within £. Some may escape or enter the disk,
but this is not a problem, since in the topology on M, P is close to all
points z with | z | sufficiently near 1 — §.

We next check condition (4.1) of Lemma 4.1. This is easily done using
the following trick: given

V= (Ul, V35 <oy Un) E{OQ l}n ’

let w=(,02, ..., Vp, 1, 01,03, ...,0,). Then vesS,,, wesS,, and
() = f(w) (we extend v, w to infinite vectors by appending 0’s), since

1+ 0,2+ 0,22+ -+ +0,2"
and

1+ Ulz+uzz2+ % %% +Unzn+zn+l+vlzn+2+ . e +Unzzll+1
=0 +0,2+022+ - +0,2") (1 + z"*D)

have the same zeros inside {z:|z|< 1 — 8}. Therefore we may apply
Lemma 4.1 and deduce that the image of f is path connected.

Since f((0,0,...)) = (P,P, P, ..., P), we may apply Lemma 4.2 with
A = image(f) to deduce that W; with the annulus {z:1 — & <|z|< 1}
shrunk to a point P is a connected subset of M. This is equivalent to the
connectivity of ﬁfs .

Since W n {z:]z|< 1} is the decreasing intersection of the compact
connected sets ﬁfl /m» 1t too is connected. So is its image under z+— 1/z.
Finally, W is the union of these two sets, which meet on the unit circle,
so W is connected as well. []
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5. W IS PATH CONNECTED

Here we refine the argument of the previous section to prove W is path
connected. There are two main difficulties that arise. One is that the path
connected analogue of Lemma 4.2, although still true (at least when M is
Hausdorff), is much harder to prove. The second is that a decreasing
intersection of compact path connected sets need not be path connected, so
we can no longer restrict our attention to the zeros within {z:|z|< 1 — 8}.

The lifting lemma below will be used as a substitute for Lemma 4.2. Its
proof is based on proofs obtained independently by David desJardins and
Emanuel Knill.

LEMMA 5.1. (Lifting lemma): Let M be a Hausdorff space and
let mw:M"—> M"/S, be the projection map. Let f:[0,1] > M"/S, be a
continuous map. Then there is a continuous map g:[0,1] > M" such
that f=mog.

SUBLEMMA 5.1. Let A = {te€[0,1]: f(t) consists of n copies of a
single point}. Let g:[0,1] > M™ be an arbitrary function that is a lift
of f. Then g is automatically continuous at all t, € A.

Proof. Suppose toeA and f(%) ={x,x,...,x}. If U is an open
neighborhood of x,

g~ Un) = f-1(m(@Um)

which is open. Since such subsets U” form a neighborhood base at
(x, x, ..., x) € M", this proves that g is continuous at #,.

SUBLEMMA 5.2. Let I, 1, be closed subintervals of 1[0,1] such that
Iin1I, is a single point {t}. If g; Is a continuous lift of f on
1;(j = 1,2) then there is a continuous lift g of f on I,uUl, such that
gl =&.

Proof. Since g,(¢) and g,(¢) differ only by a permutation, we can
compose g, with a permutation 6: M” - M" and then paste the result to g:.

SUBLEMMA 5.3. The conclusions of Sublemma 5.2 hold even if I,
and I, intersect in more than a point.
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Proof. This follows form Sublemma 5.2 since I; U I, can be expressed
as the union of I; with at most two closed subintervals of I, each meeting /,
in a point.

SUBLEMMA 5.4. If I is a closed subinterval of [0,1] andevery tel
has a neighborhood on which f has a lift, then f has a lift on I

Proof. By compactness, we can cover I by closed intervals I, I,, ..., I
on which f has a lift, and we may assume I, n I, # @ for 1 <j < k. By
induction on j, Sublemma 5.3 lets us extend the lift on I; to a lift on
LulLbu - uUlj. '

SUBLEMMA 5.5. The same holds if I is any subinterval of [0, 1].

Proof. Let C;, ¢ C, C --- be closed intervals such that \U C; = I. By

i=1
Sublemma 5.4, there is a lift on each C;. By repeated use of Sublemma 5.3,
extend the lift on C; to a lift on C,, extend this to C;, etc. This process gives
a lift on I.

Proof of Lemma 5.1. We use induction on n. The case n =1 is
trivial, so assume » > 1. By Sublemma 5.1, it suffices to find a lift on
each connected component I of [0, 1]\A. By Sublemma 5.5 it suffices to
show that any ¢, € I has a neighborhood on which there is a lift.

Suppose zZi, 22, ..., Zx(k>2) are the distinct elements of the
multiset f(#,), occurring with multiplicities n,, n,, ..., n; respectively.
Since M i1s Hausdorff, there exist pairwise disjoint neighborhoods U, of z;.
Let N be a closed interval neighborhood of ¢, such that ¢ € N implies
f(t) e (U™ x -+ x U™). Then on N, we can lift f to a path f in
Mmi/S, X -+ X M"k/S,, since the projection

M"i/S, X« X M"/S, — M"/S,

restricts to a homeomorphism on the projections of UJ!' X --- X Uj*. By
the inductive hypothesis applied to each of the k£ coordinates of f, we can
lift £ to a path in M"1 X -+ X M" = M" as desired. [

THEOREM 5.1. W s path connected.

Proof. Let M be {z:]z]|< 1} with the unit circle shrunk to a point P.
Again M is topologically a sphere, so we may give it a bounded metric d.
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Let M= be the set of sequences x = {x;};, which converge to P and define
a metric d, on M, by

de (X, ) = sup d(x;, yi) -

Let the group S. of permutations of {1, 2, ...,} act on M by permuting the
coordinates. Define a metric D on the quotient space M*/S. by letting
D(x,y) = inf d.(x, 0y).
6 €S,
Here (x,y) denote the projections of x,y e M* to M*/S.. (That

D(x,y) = 0if and only if x = y requires the convergence of x, y.) The set of
zeros of a power series

1 +e12+ 8224+ -

inside {z: | z | < 1} forms a sequence in M converging to P (by Proposition 2.1)
or else is finite, in which case we append an infinite sequence of P’s. This
defines a map

f:{0,1}® > M=/S, .

By the same Rouché’s theorem argument used in the proof of Theorem 4.1,
this map is continuous. The conditions of Lemma 4.1 hold for the same reason
as before, so the image of f is path connected.

Suppose zo€ Wn{z:|z|<1}. Let ®:[0,1] > M=/S. be a path
from the image under f of a 0,1 power series vanishing at z, to
f((O’ Oa "')) = {P9P9P9 '“}'

Fix m > 1, and let M,, be {z:|z|< 1} with the annulus

{z:1 - 1/m<|z]< 1}

shrunk to a point Q. Define | | on M,, by letting |Q|=1— 1/m. By
Proposition 2.1 there is an upper bound n on the number of zeros of
a 0,1 power series inside {z:|z|< 1 — 1/m}. The path ® induces a path

®,:[0,1] = M,)"/S, .

(Apply the projection M — M, to each element of w(¢), and throw away
infinitely many Q’s to get ®,,(¢).)

Pick m, > 1 such that|zo | < 1 — 2/m,. We define inductively a sequence
of paths

Om: [0,t0] = W, m=my, my+1,...,
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each extending the one before. First apply Lemma 5.1 to lift w,, to a
path [0, 1] —>M;0. Since some coordinate of ®n,,(0) is zo and since all
coordinates of ®,,,(1) are Q, we get a path ®,, from zoto Q in M,,,. Let t,,,
be the smallest # € [0, 1] such that | @,,(¢) | = 1 — 2/m,. Then by restriction
to [0, t,,] we get a path @, in C since {z € M,,,: |z|< 1 — 2/mo} can be
identified with {z € C:|z|< 1 — 2/m,}. Finally, since ®m, () is always a
coordinate of w(?), @, (f) € W for all ¢ € [0, Emol-

By the same process, we inductively find for each m > m, a path
Om: [tm1,11 > M,, such that ®,(tm—-1) = Om—-1(tm_1. Let ¢, be the
smallest ¢ > ¢,,_; such that

- 2
|on ()| >1-—,
m
and obtain a path

a)m: [tm—l9 tm] - W
which we append to ®,,_; to obtain

@,:[0,t,] > W

such that ®,,(¢?) is always a coordinate of ®(?).
Let ¢, = sup t,,. Piecing together the w,,’s gives a continuous map
K @: [0, 1) > W
such that ®(#) is a coordinate of w(¢) for all t € [0, t). The set of limit
points of | @ (¢) | as ¢ = ., is a closed interval I. Let ®(¢=) = {21, 22, Z3, - }-
If r € [0, 1) is distinct from | z; |, | 22|, | z3 |, ... then sup | r — | z; || > O (since

I

{z;} = P) and by continuity of w, r also differs by some ¢ from all coor-
dinates of w(¢) for ¢ in a neighborhood of ., so r cannot be a limit point
of |o(¢)|ast—t.. Thus I C {1, |z:|, | z2], ...} but|z;|— 1 so I must be a
single point. Since |0 (t,)|=1 — 2/m for m > my, lim |0 (¢) | = 1.

| Sl P
Case 1: 1 is the only limit point of w(¢) as ¢ — ¢,. Then @ extends to a
path [0, f.,] = W from z, to 1.

Case 2: There is a limit point 8 #1,|/0|= 1, of ®(¢) as t > ¢, . By
Theorem 3.1, there is an open disc centered at 6 contained in W. For some
t < to, ®(t) is in this disc, so we can replace the tail end of @ on [¢, t..) by
a straight line from @(?) to 6 in W.

In either case we can connect z, to a point on the unit circle via a path
in W. Ihe same is true if z, € ﬁ/, Izo | > 1, since Iif/is closed under z+— 1/z.

Since W contains the unit circle, this proves that W is path connected. [
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6. GRAPHS, COMPUTATIONS, AND THE SHAPE OF W

The computations of zeros graphed in our figures were performed in double
precision (approx. 18 decimal places) on a Silicon Graphics workstation. Some
of the zeros were checked for accuracy by recomputing them in double
precision (approx. 28 decimal places) on a Cray X-MP. The zero-finding
program used the Jenkins-Traub algorithm and was taken from a standard
subroutine library. Checks showed that the values that were obtained were
accurate on average to at least 10 decimal places, which was sufficient for our
graphs. The program that was used appeared to produce accurate values on
the Cray for the zeros for polynomials of degrees up to about 150.
(Computation of zeros of polynomials of much higher degree would have
required better algorithms, cf [9].)

Zeros of a large set of random polynomials f(z) € P of degree 100 were
computed on the Cray, and they exhibit most of the features visible in
Figures 1-3. However, they are not as interesting as the lower degree zeros that
are exhibited in Figures 1-3. The ‘‘spikes’’ or ‘‘tendrils’’ that generate the
fractal appearance in the graphs we include come from a small fraction of the
polynomials. Sampling even 104 of the 2% polynomials f(z) € P of
degree 100 does not yield a good representation of the extremal features that
we expect to see for high as well as low degrees.

Graphs were prepared using the S system [2].

The graphs in Figures 4-6 were prepared differently._A program was written
that checked whether a given w with | w|< 1 is in W. Note that
(6.1)

Y acw*| < B=max(l,|]1+wl|)/0-]|wl|?),
k=0

where the aq, are any 0, 1 coefficients, since we can write

8

arwr = (ag+a;w) + (a; + as w)w? + -

k=20

The procedure was to test all sets of 0,1 coefficients a, ..., 130 tO see
whether they could be the initial segment of coefficients of a power series

(6.2) f@ =1+ i a,z*
k=1

for which f(w) = 0. Let us regard the strings of coefficients Ay, ..., Ay aS
the leaves of a balanced binary tree, with the nodes below the root
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corresponding to a;, those below to a,, a,, etc. The procedure was to
explore this tree, checking whether
d

1+ Z ajo
j=1

(6.3) >|z|?*'B

at any stage. If (6.3) is satisfied, then w is not a zero of any power series of
the form (6.2) with initial coefficients 1, a,, ..., a4, and the subtree of that
node does not have to be explored. If all the leaves are discarded by this
procedure, we have a rigorous proof that w ¢ ﬁ/, and so in fact an open
neighborhood of w is outside W. On the other hand, if a leaf was found with

(6.4) 1+ E a;w/

J=1

120
‘ <|z|®%B/10,

then the program assumed that w € w. (By establishing lower bounds for the
120

derivative of the polynomial 1 + Z a;z/ at w and using crude upper bounds
1

for the second derivative, one could in principle prove that there is some
point w’ close to w such that w’ € ﬁf, although the 10 in condition (6.4) might
have to be decreased. Another way to prove this would be to use Lemma 3.1.
This step was not carried out.) Figures 4-6 were produced by testing each w
in a 1936 x 1936 or a 1944 x 1944 grid (corresponding to the resolution of
our laser printer). There were few points w for which neither condition (6.3)
nor condition (6.4) held. The exceptions occur primarily in Figure 4, but they
do not affect how the picture looks. Had we used a tree of depth 80, the excep-
tions would have been much more frequent.

The computations of Figures 4-6 are not completely rigorous in that the
determination of w & W is rigorous, while that of w € W is not. Moreover,
an implicit premise in the preparation of Figures 4-6 was that if a point
we ﬁ/, then the whole neighborhood of w represented by the corresponding
pixel is in W. On the other hand, the computations of Figures 1-3 are
rigorous.

It is possible to use computations to obtain rigorous estimates for W that
are sharper than those of Theorem 2.1. As an example, we sketch how a
moderate amount of straightforward computing establishes that there
are no we W\R with | w|< 0.7. We modify the method of proof of
Theorem 2.1. Write

10 1
(6.5) f) =1+ Y ajzj+£(z“+z12+ )+ g(2),

J=1
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where

(66) g(z)zi E Skzk, .81(—_— +1.

Then we can write

f(z) = F(z) + g(2),
F(z) = G)/2(1 - 2),

; 10
G(z)=2(1-2) (1 + ) ajzf) + z!.

j=1

If we establish that | F(z) | > | g(z) | on some simple closed contour about the
origin, then by Rouché’s theorem f(z) and F(z) will have the same number
of zeros inside that contour. To prove that | F(z) | > | g(z) | on a contour C,
it suffices to show that | F(z) | > g(z) + & on a discrete set of points z on C,
where & > 0 is such that bounds on the derivatives of F(z) and g(z) guarantee
that | F(z) | — | g(z) | will not decrease by more than & between the sampling
points. This was applied to each of the 2!° choices of a,, ..., a,. Of the
1024 functions F(z), 997 satisfied | F(z) | > | g(z) | on

Cy={z:]z]|=0.7}.

The remaining 27 functions F(z) were shown to satisfy | F(z) | > | g(z) | on the
contour

C,=1{z:]1z]=0.7, |y|>0.04}
uf{z:x=—0.74,|y|<0.04}
u{z:|y]|=0.04, —0.74<x< —-0.6,|z]|>0.7}.

Finally, zeros of each of the 1024 polynomials G(z) were computed, and it
was found that 85 of these polynomials had a single zero in | z | < 0.74, and
the remaining 939 had none. Thus in all cases we can conclude that f(z) has
at most one zero in | z|< 0.7. Such a zero has to be real.

The estimates used above were crude, and with more care one can either
decrease the amount of computing (and even eliminate it altogether) or obtain
better bounds for W.

The basic principle that makes it possible to obtain good estimates of W
is that for extremal points w € W, the power series f(z) with 0, 1 coefficients

such that f(w) = 0 are restricted. For example the region depicted in
Figures 3 and 4 is

V={z=x+1iy: -0.501 < x < —-0.497,0.537 < y < 0.541} .
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Numerical computation (evaluating polynomials of degrees <9 with
0, 1 coefficients at a 41 X 41 uniform grid, and bounding derivatives) shows
that if w e V' n W, then w can only be a zero of a power series of the form

f@R=14+z+22+z2*+27+2°+ Y apz".
k=10
This restricted the set of f(z) that had to be considered, and made possible
the computation of Figure 3, as it would not have been feasible to examine
all polynomials of degrees < 32. Furthermore, this restriction on the
coefficients of f(z) makes it possible to estimate the shape of V' n w.

It should be possible to prove rigorously, with the help of numerical
computations, such as those mentioned above, that the hole in W mentioned
in the Introduction and pictured in Figure 6 is isolated in the sense that there
is a continuous closed curve in W N U, for U a small rectangle, that encloses
the hole. We have not done this. B

To explain the fractal appearance of W, suppose that we W,|w|< 1,
and that f(w) = 0 where

d
f@Q=1+ ) a;z/, a=0,1.
j=1
Suppose that

g@) = f@) +z9*1 ), byzk, by=0,1.

k=0

If g(z) = 0 and | z — w|is small, while d is large, we have
0=g@)=gw) +(z—-wg'w

= wi+l Y bewk+ (z—w)f'(w) .
k=0
If f'(w) # 0 (which as far as we know may hold for all w with |w]|< 1),
then g’(w) # 0 for d large enough, and we can expect that
wd+1 Z:’zobkwk

S'(w)

=W —

Thus if



POLYNOMIALS WITH 0,1 COEFFICIENTS 347

then we expect to find zeros in a neighborhood of each point of

w—wit(f'(W) 10w .

The set Q(w) is connected [1], and for w ¢ R, it seems that it contains a small
disk around the origin. The set Q(w) is a continuous function of w,
which accounts for the similarity of the protrusions from W visible in
Figures 5 and 6. (The protrusions in Figure 4 are different, since there
the sets Q(w) are of different shape from those in Figures 5 and 6.)
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