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36 J.-P. SERRE

On note Algyx la catégorie des anneaux commutatifs X; munis d’un
morphisme K — K.

L’application identique d’un ensemble X est notée 15 (ou simplement 1 si
aucune confusion sur X n’est a craindre).

§1. COGEBRES ET COMODULES (GENERALITES)

1.1. COGEBRES

Dans tout ce paragraphe, C désigne une cogébre, de coproduit d, possédant
une co-unité (4 droite et a gauche) e. Rappelons (cf. Alg. III) ce que cela
signifie:

C est un module (sur K);

d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(C1) (Coassociativité) Les applications linéaires (1o®d)od et
d®1c)od de C dans C ® C Q C coincident.

() (Co-unité) (Ic®e)od=1cet (e®Qlp)od = 1.

Exemples

(1) Soit Cune cogebre de co-unité e. En composant le coproduit de C avec
la symétrie canonique de C & C, on obtient une seconde structure de cogebre
sur C, dite opposée de la premiere. On la note C?; la co-unité de C? est e.

(2) Toute somme directe de cogébres a une structure naturelle de cogébre.
En particulier, 0 est une cogebre. ’

(3) Supposons que C soit projectif de type fini (comme K-module), et
soit A son dual. Comme le dual de C ® C s’identifie 8 A X A, toute structure
de cogébre sur C correspond a une structure d’algebre associative sur A, et
réciproquement. Pour que e € A soit co-unité de C, il faut et il suffit que ce
soit un élément unité (& gauche et a droite) pour A.

(Lorsque K est un corps, on verra plus loin que toute cogébre est limite
inductive de cogébres obtenues par ce procédé.)

(4) Soit ¥ un module projectif de type fini. Soit
C=End()=VR V.
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La forme bilinéaire Tr(xv) met C en dualité avec lui-méme; appliquant la
méthode de ’exemple précédent, on voit que la structure d’algebre de C définit
par dualité une structure de cogebre sur C, de co-unité la trace Tr: C — K. En
particulier M,(K) a une structure de cogébre canonique, pour laquelle on a

d(Eij) = E Ekj X Ej -
k

(La cogébre opposée est plus sympathique, cf. exercice 1.)

(5) Soient C; et C, deux cogebres, de coproduits d; et d, et de co-unites
e, et e,. Soit ¢ I'isomorphisme canonique de G, ® C; sur C; ® Cy; le
composé

(1c, ® 6® 1¢,) © (d1 ® d>)

munit C; ® C, d’une structure de cogebre, dite produit tensoriel de celles de
C, et C,; elle admet pour co-unité e; ® e,.

(6) L’algebre affine d’un schéma en monoides affine sur K a une structure
naturelle de cogébre, cf. n° 3.1.

1.2. COMODULES

DEFINITION 1. On appelle comodule (¢ gauche) sur C tout module E
muni d’une application linéaire dg:E— C Q@ E vérifiant les axiomes
suivants:

(1) Les applications linéaires (d ® 1g) ©dr et (1c® dg) ©deg de E
dans C® C® E coincident.

2) (e®1g)odg=lg.

L’application dg s’appelle le coproduit de E; on se permet souvent de le
(Ia) noter d.

Remarques

1) Il y a une notion analogue de comodule a droite; on laisse au lecteur
le soin de I’expliciter (ou de remplacer la cogebre C par son opposée C?°). [Le
rédacteur s’est apercu trop tard qu’il était plus commode d’échanger droite et
gauche, i.e. d’appeler «comodules a droite» ceux de la définition 1.]

2) Toute application linéaire dp: E— C® E définit de maniére
évidente une application linéaire de: EQE — C. Lorsque E est un
K-module projectif de type fini, ’application dg— d}s est un isomorphisme
de Hom(E,C® E) sur Hom(E ® E’',C). Or EQ® E’ = End(E) a une
structure naturelle de cogébre, cf. n® 1.1, Exemple 4). On peut vérifier
(cf. exercice 1) que dg vérifie les axiomes (1) et (2) si et seulement si a’}; est
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un morphisme de la cogébre opposée End(E)° a End(E) dans la cogébre C,
compatible avec les co-unités.

3) Supposons que E soit libre de base (v;);;. Une application linéaire
dg: E— C Q E est alors définie par une famille ¢;;, i,/ € I, d’éléments de C
telle que dg(v;) = Z c;; ®v; (pour i fixé, c; doit étre nul pour presque

Jjel
tout j). Les conditions (1) et (2) de la définition 1 se traduisent alors par les
formules:

1 d(c;) = Z Cik & C;j pour i, jel
kel
(2°) e(cy) = &y pour i,jel.

(Lorsque I est fini, cet exemple peut étre considéré comme un cas particulier
du précédent.)
Exemples de comodules

1) Le module C, muni de d, est un comodule (a2 gauche et a droite).

2) Lasomme directe d’une famille de comodules a une structure naturelle
de comodule.

3) Si E est un comodule, et ¥V un K-module quelconque, le couple
(EQ® V,ds ® 1y) est un comodule, noté simplement £ Q V.
4) Les notations étant celles de ’exemple 5) du n° 1.1, soient E; un

comodule sur C, et E, un comodule sur C,. Soit T I’isomorphisme canonique
de E; ® C, sur C, ® E,;; ’application

(¢, ® T ® 1g,) © (dg, ® dg,)
munit E; ® E, d’une structure de comodule sur C; ® C,.

5) Si G est un schéma en monoides affine sur K, et C la bigebre correspon-
dante (cf. n° 3.1), la notion de comodule sur C coincide avec celle de
représentation linéaire de G (ou G-module), cf. n° 3.2, ainsi que SGAD,
exposé 1.

DEFINITION 2. Soient E, et E, deux comodules. On appelle
C-morphisme (ou simplement morphisme) de E, dans E, toute appli-
cation linéaire f:E,— E, telle que

P
(*) (1c® f) o dg, =dg,0 f .

Les C-morphismes de E; dans FE, forment un sous-K-module de
Hom(E;, E,); on le note Hom¢(E, E,).

On note Com la catégorie des C-comodules (a2 gauche); ’addition des
C-morphismes munit Com¢ d’une structure de catégorie additive.
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1.3. UNE FORMULE D’ADJONCTION

On conserve les notations précédentes. Soit ¥ un K-module; d’aprés le
n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur CQ V,

le coproduit correspondant étant d Q 1.
Soit d’autre part £ un comodule. Définissons une application linéaire

6: Hom(E, V) > Hom¢(F, CQ V)
par
6@ =(0c®gode, si geHom(EV).

Cela a un sens, car dg est un morphisme de £ dans C® E, et 10 ® g est un
morphisme de C&® E dans C & V.

PROPOSITION 1. L’application 6:Hom(E, V) - HomC(E,C ® V) est
un isomorphisme.

Soit f:E—- C® V un morphisme. En composant f avec e ® 1y:
C ® V — V, on obtient un élément €(f) de Hom(E, V). On a ainsi défini une
application linéaire

e: Hom®(E,C ® V) - Hom(E, V)
et il suffit de prouver que 6 et € sont inverses ’un de 1’autre. Tout d’abord,
si g €e Hom(E, V), on a:
e(0(@) =(€®1) o0 =1y o(Ic®go
=e®godg=go(e® lg)odg
=golg=g,

ce qui montre bien que £ 0 § = 1.
D’autre part, si f € HomC(E,C ® V), on a:

0(e(f) =Uc®e(N))odr=(1c® (e® 1y) © f)) 0 ds
=(1c®e®1y)o(1c® f) o dg
=(lc®e@1ly)o@d®1y)o f
=(1c®eod)®1y) o f
=lc®1ly)o f=71f,

ce qui montre bien que 6 o € = 1, cqfd.

[Ce qui précede est un bon exemple d’un principe général: tout calcul relatif
aux cogebres est trivial et incompréhensible.]
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Exemples

1) Prenons V =FE et g = 1g; I’élément correspondant de Hom€(E,C ® E)
est le coproduit dg: E—> C® E.

2) Prenons V = K. On obtient une bijection 0: E' = HomC¢(E, C). La
bijection réciproque associe a tout morphisme f:E — C la forme linéaire

eo f.

1.4. CONSEQUENCES D’UNE HYPOTHESE DE PLATITUDE

A partir de maintenant, on suppose que C est plat (comme K-module). Si
V est un sous-module d’un module W, on identifie C & V au sous-module
correspondant de CR W, et CQ (W/V)a (CQR® W)/ (CR V).

DEFINITION 3. Soit E un C-comodule, et soit V un sous-module

de E. On dit que V est stable par C (ou que c’est un sous-comodule
de E) si dr appliqgue V dans CQ V.

Si tel est le cas, on vérifie tout de suite que Papplication dy: V>C X V
induite par dg fait de ¥V un comodule (d’ou la terminologie); on définit de
méme le comodule quotient E/ V.

Exemples

1) Soit (V;);; une famille de sous-modules du comodule E. Si les V;
sont stables par C, il en est de méme de E V; (resp. de M V; lorsque I est

iel iel
fini). Cela résulte des formules:
CRLV)I=L(CRV)

. CR®NV)=N(C®V), I fini,

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dg: E = C Q E identifie E a un
sous-comodule de C Q E (muni du coproduit d ® 1g, cf. n° 1.3). On notera
que ce sous-comodule est méme facteur direct dans C @ E comme K-module
(mais pas en général comme comodule), en vertu de la formule (2) de la
définition 1.

PROPOSITION 2. Soit f:E, — E, un morphisme de comodules. Alors
Ker(f) et Im(f) sont stables par C,; de plus, f définit par passage
au quotient un isomorphisme du comodule E;/Ker(f) sur le comodule

Im(f).
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Puisque C est plat, C ® Ker(f) est le noyau de 1c ® fet C®Im(f)en
est I’image. On en déduit aussitot que Ker(f) et Im(f) sont stables par C.
Le fait que f définisse un isomorphisme de E;/Ker(f) sur Im( f) est
immédiat.

COROLLAIRE 1. La catégorie Comc est une catégorie abélienne et le
foncteur «module sous-jacent» est exact.

C’est clair.

Remargue. 1l est non moins clair que le foncteur «module sous-jacent»
commute aux limites projectives finies et aux limites inductives quelconques.

COROLLAIRE 2. Si V est un K-module injectif, le comodule CQ V
est injectif dans Comg.

En effet, la proposition 1 montre que le foncteur
E~ HomC(E, CQ V)

est exact.

PROPOSITION 3. Soit V un sous-module d’'un comodule E, et soit
Vo [Pensemble des éléments x € E tels que dg(x) appartiennea CQ V.
Alors V?° est un sous-comodule de E; c’est le plus grand sous-comodule
de E contenu dans V.

Il faut d’abord prouver que V¢ est stable par C, i.e. que dy applique V°
dans C® V°. Or Ve est défini comme le noyau de I’homomorphisme
E-CQ®E—CQR(E/V), la premicre fleche étant dr. Puisque C est plat, il
s’ensuit que C Q V¢ est le noyau de ’homomorphisme

CRE-CRCRQE-CQRQCRE/V),

la premiere fleche étant 1o ® dg. Pour prouver que dg(V °) est contenu dans
C ® Vo, il suffit donc de vérifier que le composé

Vo—>C®E—>C®C®E—’C®C®(E/V)

est nul. Mais, d’aprés 1’axiome (1) de la déf. 1, le composé (1¢ ® dz) © dg
est égal a (d ® 1g) © dg. Or dg applique V° dans C ® V par construction;
Pimage de V° dans C® C @ E est donc contenue dans (d ® 1) (C ® V),
donc dans C® C® V, et son image dans C® C ® (E/ V) est bien nulle.
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D’autre part, I’axiome (2) de la déf. 1 montre que V° est contenu dans
(e ® 1p) (C® V), donc dans V. Enfin, il est clair que tout sous-comodule
de E contenu dans V est contenu dans V°, cqfd.

Nous dirons qu’un comodule est de type fini (resp. libre, projectif, ...) si
c’est un K-module de type fini (resp. un K-module libre, un K-module
projectif, ...).

COROLLAIRE. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
de(W) est un sous-module de type fini de C ® E. On peut donc trouver un
sous-module V de type fini de E tel que C ® V contienne dg(W). Soit V°
I’ensemble des x € E tels que de(x) € C&® V. D’aprés la proposition, V¢ est
un sous-comodule de E contenu dans V, donc de type fini (puique K est
noethérien). Il est clair que V° contient W, cqfd.

§2. COGEBRES SUR UN CORPS
A partir de maintenant, ’anneau de base K est un corps.

2.1. SOUS-COGEBRES

Soit C une cogebre sur K, de coproduit d et de co-unité e.
DEFINITION 1. Un sous-espace vectoriel X de C est appelé une sous-
cogébre de C si d(X) est contenu dans X @ X.

S’il en est ainsi, ’application linéaire dyx: X — X ® X induite par d
munit X d’une structure de cogébre, ayant pour co-unité la restriction
de e a X.

Exemples

1) Si (X;);cs est une famille de sous-cogebres de C, la somme des X; et
I’intersection des X; sont des sous-cogebres de C. Cela se vérifie au moyen
des formules:

Y Xi®X) C (Y X)® (Y X)
NX®X) =(NX)®(N X)) .
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