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On note A\gK la catégorie des anneaux commutatifs K\ munis d'un
morphisme K-* K\.

L'application identique d'un ensemble X est notée lx (ou simplement 1 si

aucune confusion sur X n'est à craindre).

§ 1. COGÈBRES ET COMODULES (GÉNÉRALITÉS)

1.1. COGÈBRES

Dans tout ce paragraphe, C désigne une cogèbre, de coproduit d, possédant
une co-unité (à droite et à gauche) e. Rappelons (cf. A lg. III) ce que cela

signifie:

C est un module (sur K);
d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(Ci) (Coassociativité) Les applications linéaires (1 c®d)od et

(id (g) lc) ° d de C dans C (g) C (g) C coïncident.

(C2) (Co-unité) (lcg)e)od lc et (e (g lc) ° d lc.

Exemples

(1) Soit C une cogèbre de co-unité e. En composant le coproduit de C avec

la symétrie canonique de C (x) C, on obtient une seconde structure de cogèbre

sur C, dite opposée de la première. On la note C°; la co-unité de C° est e.

(2) Toute somme directe de cogèbres a une structure naturelle de cogèbre.
En particulier, 0 est une cogèbre.

(3) Supposons que C soit projectif de type fini (comme if-module), et

soit A son dual. Comme le dual de C (x) C s'identifie à A (x) A, toute structure
de cogèbre sur C correspond à une structure d'algèbre associative sur A, et

réciproquement. Pour que e e A soit co-unité de C, il faut et il suffit que ce

soit un élément unité (à gauche et à droite) pour A.
(Lorsque K est un corps, on verra plus loin que toute cogèbre est limite

inductive de cogèbres obtenues par ce procédé.)

(4) Soit V un module projectif de type fini. Soit

C End (F) V® V'
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La forme bilinéaire Tr(uu) met C en dualité avec lui-même; appliquant la

méthode de l'exemple précédent, on voit que la structure d'algèbre de définit

par dualité une structure de cogèbre sur C, de co-unité la trace Tr: -* En

particulier Mn(K) a une structure de cogèbre canonique, pour laquelle on a

d{Eu) £ EkJ 0 Eik
k

(La cogèbre opposée est plus sympathique, cf. exercice 1.)

(5) Soient Ci et C2 deux cogèbres, de coproduits dx et d2 et de co-unités

ex et e2. Soit o l'isomorphisme canonique de C2 ® Ci sur Ci (x) C2 ; le

composé

(le, (8) a® 1 c2) ° (di ® d2)

munit Ci (x) C2 d'une structure de cogèbre, dite produit tensoriel de celles de

Ci et C2 ; elle admet pour co-unité ex ® e2.

(6) L'algèbre affine d'un schéma en monoïdes affine sur K a une structure

naturelle de cogèbre, cf. n° 3.1.

1.2. COMODULES

Définition 1. On appelle comodule (à gauche) sur C tout module E
muni d'une application linéaire dE: E -> C ® E vérifiant les axiomes

suivants:

(1) Les applications linéaires (d ® lE) ° dE et (le ® dE) ° dE de E
dans C ® C ® E coïncident.

(2) (e®lE)odE=lE.
L'application dE s'appelle le coproduit de E; on se permet souvent de le

(la) noter d.

Remarques

1) Il y a une notion analogue de comodule à droite ; on laisse au lecteur

le soin de l'expliciter (ou de remplacer la cogèbre C par son opposée C°). [Le
rédacteur s'est aperçu trop tard qu'il était plus commode d'échanger droite et

gauche, i.e. d'appeler «comodules à droite» ceux de la définition 1.]

2) Toute application linéaire dE:E~+C®E définit de manière
évidente une application linéaire dE:E®E'->C. Lorsque E est un
ÄT-module projectif de type fini, l'application dE^> dE est un isomorphisme
de Horn (is, C ® E) sur Horn (is ® is", C). Or E ® E' - End (is) a une
structure naturelle de cogèbre, cf. n° 1.1, Exemple 4). On peut vérifier
(cf. exercice 1) que dE vérifie les axiomes (1) et (2) si et seulement si dlE est
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un morphisme de la cogèbre opposée End (E)0 à End (E) dans la cogèbre C,
compatible avec les co-unités.

3) Supposons que E soit libre de base (Ui)ieI. Une application linéaire
dE: E -+ C (x) E est alors définie par une famille cu, i,j e /, d'éléments de C
telle que dE{vi) £ c/y (g) Vj (pour i fixé, doit être nul pour presque

j si
tout j). Les conditions (1) et (2) de la définition 1 se traduisent alors par les

formules:

(1') d(Cij)£ Cik ® ckj pour ij e I
ksi

(2') e(Cjj) 8ij pour

(Lorsque / est fini, cet exemple peut être considéré comme un cas particulier
du précédent.)
Exemples de comodules

1) Le module C, muni de d, est un comodule (à gauche et à droite).

2) La somme directe d'une famille de comodules a une structure naturelle
de comodule.

3) Si E est un comodule, et V un ^-module quelconque, le couple

(E (x) F, dE (x) 1 y) est un comodule, noté simplement E ® V.

4) Les notations étant celles de l'exemple 5) du n° 1.1, soient E{ un
comodule sur Ci et E2 un comodule sur C2. Soit t l'isomorphisme canonique
de Ei (g) C2 sur C2 (g) Ex ; l'application

(lcj ® T ® 1e2) ° ® dE2)

munit Ei (x) E2 d'une structure de comodule sur Ci 0 C2.

5) Si G est un schéma en monoïdes affine sur K, et C la bigèbre correspondante

(cf. n° 3.1), la notion de comodule sur C coïncide avec celle de

représentation linéaire de G (ou G-module), cf. n° 3.2, ainsi que SGAD,
exposé I.

Définition 2. Soient E{ et E2 deux comodules. On appelle

C-morphisme (ou simplement morphisme) de E{ dans E2 toute
application linéaire /: Ex - E2 telle que

(le ®f)° dEl

Les C-morphismes de E{ dans E2 forment un sous-AT-module de

Hom{Ei,E2y, on le note Hotcic(EuE2).
On note Comc la catégorie des C-comodules (à gauche); l'addition des

C-morphismes munit Comc d'une structure de catégorie additive.
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1.3. Une formule d'adjonction

On conserve les notations précédentes. Soit V un iCmodule; d'après le

n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur C (x) V,

le coproduit correspondant étant d ® \v>

Soit d'autre part E un comodule. Définissons une application linéaire

0 : HomCE, V) -> Hom C(E, C (x) V)
par

0(g) de 0 g) o dE si g g Hom (E, V)

Cela a un sens, car dE est un morphisme de E dans C 0 E, et lc ® g est un
morphisme de C (g) E dans C (x) V.

Proposition 1. L'application 0: Horn (is, V) - Homc(E, C (x) F) est
un isomorphisme.

Soit f:E-+C®V un morphisme. En composant / avec e (x) lv:
C (g) V-> V, on obtient un élément s(/) de Hom(is, V). On a ainsi défini une
application linéaire

s: Hornc(is, C 0 V) Hom(£, V)

et il suffit de prouver que 0 et s sont inverses l'un de l'autre. Tout d'abord,
si g e Hom(E, V), on a:

e(0(g)) (e ® If) ° 0(g) (e (x) iv) o (lc ® g) o dE

(e (g) g) o dE g o (e ® 1E) q dE

g ° Ie g

ce qui montre bien que e o 0 i.
D'autre part, si f eHom C(E,C®F), on a:

6(e(/)) (le 0 s(/)) o dE=(lc 0 ((e 0 1K) o /)) o dE

(le ® e ® If) ° (le ® f) ° dE

(le ® e ® If) ° (d (x) \v) o f
(((le ® e) o d) (g) lv) o /
(le ® If) ° / /

ce qui montre bien que 0 o s 1, cqfd.
[Ce qui précède est un bon exemple d'un principe général: tout calcul relatif
aux cogèbres est trivial et incompréhensible.]
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Exemples

1) Prenons V - E et g 1E; l'élément correspondant de Homc(E,C(g)E)
est le coproduit dE\ E -> C (x) E.

2) Prenons F K. On obtient une bijection 0: E' Homc(E, C). La
bijection réciproque associe à tout morphisme f:E-*C la forme linéaire
e ° /.

1.4. Conséquences d'une hypothèse de platitude

A partir de maintenant, on suppose que C est plat (comme AT-module). Si

F est un sous-module d'un module W, on identifie C (g) F au sous-module

correspondant de C (g) FF, et C (x) (IF/ F) à (C (x) fF)/(C (g) F).

Définition 3. SojY E un C-comodule, et soit V un sous-module
de E. On dit que V est stable par C (ou que c'est un sous-comodule
de E) si dE applique V dans C (x) F.

Si tel est le cas, on vérifie tout de suite que l'application dv'. F C (x) F
induite par dE fait de F un comodule (d'où la terminologie); on définit de

même le comodule quotient E/V.

Exemples

1) Soit (F,-)/ eI une famille de sous-modules du comodule E. Si les F,

sont stables par C, il en est de même de £ Vt (resp. de n V lorsque / est
i e I i e I

fini). Cela résulte des formules:

C0(£ V,) S (C® K,)
el c ® (O F,) n (C ® K,) / fini

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dE:E -> C ® E identifie E à un

sous-comodule de C (x) E (muni du coproduit d (x) \E, cf. n° 1.3). On notera

que ce sous-comodule est même facteur direct dans C (g) E comme ^-module
(mais pas en général comme comodule), en vertu de la formule (2) de la

définition 1.

Proposition 2. Soit f:Ei~+E2 un morphisme de comodules. Alors
Ker(/) et Im (/) sont stables par C; déplus, f définit par passage

au quotient un isomorphisme du comodule £i/Ker(/) sur le comodule

Im (/).
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Puisque C est plat, C (g) Ker(/) est le noyau de lc ® f et C (g) Im(/) en

est l'image. On en déduit aussitôt que Ker(/) et Im(/) sont stables par C.

Le fait que / définisse un isomorphisme de i?i/Ker(/) sur Im(/) est

immédiat.

Corollaire 1. La catégorie Comc est une catégorie abélienne et le

foncteur «module sous-jacent» est exact.

C'est clair.

Remarque. Il est non moins clair que le foncteur «module sous-jacent»

commute aux limites projectives finies et aux limites inductives quelconques.

Corollaire 2. Si V est un K-module injectif, le comodule C (g) F
est injectif dans Comc.

En effet, la proposition 1 montre que le foncteur

E Homc(i?, C (g) F)

est exact.

Proposition 3. Soit V un sous-module d'un comodule E, et soit
V° l'ensemble des éléments x e E tels que dE(x) appartienne à C (g) F.

Alors V° est un sous-comodule de E; c'est le plus grand sous-comodule
de E contenu dans V.

Il faut d'abord prouver que V° est stable par C, i.e. que dE applique V°
dans C(g) F0. Or V° est défini comme le noyau de l'homomorphisme
E C ® E C ® (E/ V), la première flèche étant dE. Puisque C est plat, il
s'ensuit que C (g) F0 est le noyau de l'homomorphisme

C®E-+C®C®E-+C®C®(E/V),
la première flèche étant lc ® dE. Pour prouver que dE(V°) est contenu dans
C (g) F0, il suffit donc de vérifier que le composé

V°^C®E~+C®C®E^C®C®(E/V)
est nul. Mais, d'après l'axiome (1) de la déf. 1, le composé (lc (g) dE) o dE
est égal à (d (g) l^-) o dE. Or dE applique V° dans C ® V par construction;
l'image de V° dans C ® C ® E est donc contenue dans (d ® lE) (C (g) F),
donc dans C (g) C (g) F, et son image dans C ® C ® (E/ V) est bien nulle.
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D'autre part, l'axiome (2) de la déf. 1 montre que V° est contenu dans

(e (x) 1E) (C(x) F), donc dans F. Enfin, il est clair que tout sous-comodule

de E contenu dans F est contenu dans F0, cqfd.

Nous dirons qu'un comodule est de type fini (resp. libre, projectif, si

c'est un Ä'-module de type fini (resp. un iCmodule libre, un iCmodule

projectif,

Corollaire. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
dE(W) est un sous-module de type fini de C (x) E. On peut donc trouver un
sous-module F de type fini de E tel que C (x) F contienne dE(W). Soit V°
l'ensemble des x e E" tels que dE(x) e C (x) F. D'après la proposition, V° est

un sous-comodule de E contenu dans V, donc de type fini (puique K est

noethérien). Il est clair que V° contient W, cqfd.

§2. COGÈBRES SUR UN CORPS

A partir de maintenant, l'anneau de base K est un corps.

2.1. SOUS-COGÈBRES

Soit C une cogèbre sur K, de coproduit d et de co-unité e.

Définition 1. Un sous-espace vectoriel X de C est appelé une sous-

cogèbre de C si d(X) est contenu dans X ® X.

S'il en est ainsi, l'application linéaire dx'-X^X®X induite par d

munit X d'une structure de cogèbre, ayant pour co-unité la restriction

de e à X.

Exemples

1) Si (Xi)ieI est une famille de sous-cogèbres de C, la somme des Xt et

l'intersection des Xt sont des sous-cogèbres de C. Cela se vérifie au moyen
des formules:

E (XiQXi) c (E X,)® (E
n (Xi®Xi) =(ni;)®(n x,).
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