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Supposons encore x < y mais ne supposons plus e(x, y) 0, il résulte de ce

qui précède que l'on a dans tous les cas les relations suivantes:

(3.2.1)
S» e** < ' 0 " e(X'^ eiX' Z) £(y' Z) {Sa)

'

E!eïiî>,0- e(x>y)) e(x> z) e(y> ez(Sa) ;

(3.2.2) £ (\-e(x,y))e(x,z)e(y,z
z£st,x<.z<.y

Figure 7 Figure 8 Figure 9

4. Expression des invariants de Vassiliev de degré inférieur
OU ÉGAL À 3 EN TERMES DE POINTS DE CROISEMENT

Soient f: jV A un invariant des nœuds et a une immersion générique
de S1 dans R2. On note encore abusivement /: S 5(a) A l'application
induite par l'invariant /. On continue à utiliser les notations du paragraphe 2.

4.1. Invariants de Vassiliev de degré inférieur ou égal à 1

Proposition 4.1. Tout invariant de Vassiliev de degré inférieur ou égal
à 1 est nul. (Rappelons que nous supposons qu'un invariant est nul sur le nœud
trivial.)

Démonstration. Soient / : JV A un invariant de Vassiliev de degré inférieur

ou égal à 1 et a une immersion générique de S1 dans R2. On fixe une
origine a dans S1 - X. L'application /: S S(a) -+ A, qui est de degré
inférieur ou égal à 1, est de la forme:

fis) C0 +ExeA.Ôsa,x(5)Cx

(notations du paragraphe 2). Le coefficient c0 est nul; on montre
qu'il en est de même pour les coefficients cx de la façon suivante. Soient st
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et 52 les sections descendantes correspondant aux composantes connexes de

S1 - X adjacentes à un point £, de X, on a:

— s2- Si a(Ç);

— f(s2) - /( s{) ± Cawl

— /(Si) 0 et f(s2) 0

Commentaires

On peut voir directement 4.1 comme un corollaire de 1.4 et la démonstration

ci-dessus peut sembler bien compliquée. En fait le sous-paragraphe 4.1

n'est là que pour assurer la cohérence idéologique du paragraphe 4.

4.2. Invariants de Vassiliev de degré inférieur ou égal à 2

Soient /: JK -+ A un invariant de Vassiliev de degré inférieur ou égal à 2

et a une immersion générique de S1 dans R2. On considère à nouveau l'application

/: S S (a) ~>A, de degré inférieur ou égal à 2, induite par
l'invariant /.

On fixe une origine a dans S1 - X. Soit P {x, y) une partie à

2 éléments de X avec x < y (pour la relation d'ordre sur X définie par a), on

pose:

(4.2.1) K,p(ß)= - ôio>x(,s)(l-ôw(,s))e*(s<,)Msa)

Compte tenu de (2.1), Xa,p(s) peut être également défini par:

(4.2.2) 4X,a>/,(s) (sA- (5) - >) (e>. (.s) + M-v,,))

On note enfin .^2(-V) l'ensemble des parties à 2 éléments de X. La
proposition ci-dessous généralise pour tout groupe abélien A la première
formule du théorème 4 de [La] qui correspond au cas A Z/2:

Proposition 4.2.3. L'application f: S ^ A est donnée par la formule

fis) {lPs^me{P)Kp{s))f{T)
Démonstration. La proposition 1.5 (a) et la proposition 2.5 donnent:

Proposition 4.2.4. Pour tout P dans ^2(X) et tout s dans S

on a

(Apf)(s) e(P)zP(s)f(T)
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A partir de là, la démonstration de la proposition 4.2.3 est essentiellement

la même que celle de [La]. D'après 2.3 on a

f(s)f(sa) + YlzeXàSa,z(s) f)
+ ^Pe^(X) ^sa,p(s)(Apf)(Sa

ou encore, puisque f(sa) est nul et A)égal à

m=l z£XK.z(s)f(Sa + Z)

+ lPe^X)K,p(s)e(P)zP(sa)f(T.
Tout se ramène donc au calcul de f(sa + z).

Soient z_ et z+ les composantes connexes de S1 - X respectivement

adjacentes à gauche et à droite à infa_1(z). On vérifie:

[ e(r, z) si r < z
(4.2.6) (sz ~ sa)(r)e(r,z) <

[0 si r > z ;

- sz_ z.

Avec (4.2.5) ces deux formules impliquent la suivante:

f(sz+) - f(sz_) f(sa + z) + ïlrsXr<ze(r,z)er(sa)sz(Sa)f(T).

Compte tenu de f(sz_) — 0 et f(sz+) 0, il vient

f(sa + z)= - ^rex,r<ze(-r'

D'où le résultat.
Voici maintenant la version «entière» du paragraphe 5 de [La].

On oublie qu'il existe des invariants de Vassiliev de degré 2 à valeurs dans Z
et on considère a priori l'expression £ p g ^(X) e(P) ^a,p(s).

Proposition 4.2.6. La somme Y.n „ e(P) Xa P(s) est indé-
P e 2 {X) '

pendante du choix de a.

Démonstration. Soient i le plus petit élément de X pour la relation
d'ordre induite par celle de S1 - {a} et b un point dans la composante
connexe de S1 - X adjacente à droite à i; il faut montrer:

" EP.z„„e(P)h.F(s)
On pose / a(i); on a donc i sa(i) et i infA (pour la relation

d'ordre sur X définie par a). Soit P une partie à 2 éléments de X. Si i $ P
alors XbjP(s) Xa>P(s). Si i eP et si e(P) 1 alors Xb,P{s) - Xa>P(s)

bSgt i(s) zP(sa). On a par conséquent
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^fe &2(X) e^^b,p(s)T,Pe e(P) ka,p(s)

àSaJ(s)Ei(s0) Y,xeX_

Or cette dernière somme est nulle d'après (3.1).

On pose:

(4-2.7) V2(s)lPr „ mP e V>2 (X)

Théorème 4.2.8. L'entier V2(s) est un invariant de la classe d'iso-
topie du nœud (p5

Démonstration. On vient d'assigner à tout diagramme de nœud (a; s) un
entier F2(a; s) ^(s). Il s'agit de vérifier que K2(a; s) est invariant par les

trois mouvements de Reidemeister.

L'invariance par le mouvement I (figure 10) est immédiate: un point double

qui n'est enlacé avec aucun autre n'intervient pas au second membre
de (4.2.7).

La vérification de l'invariance par les mouvements II et III (figures 11

et 12) est aisée parce que dans la formule (4.2.7) on a le choix de l'origine a.
On considère les figures 11 et 12; dans les deux cas la projection du

mouvement de Reidemeister donne une isotopie régulière entre a et une
immersion générique de S1 dans R2 que l'on note ß.

Figure 10

a ß (o<3A) (M)
Figure 11
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a (a)

-h>

->

\ /

ß (CXj/ö) (3jA)

Figure 12

Dans le cas II les ensembles AT(ß) et ^(ß) s'identifient respectivement

à JT(a) - {x, y} et X(a) - a_1({jc,^}); £(ß) s'identifie donc à un sous-

ensemble de S (a).
Dans le cas III on peut identifier ^(ß) à X(a) et X(ß) à X(a) «en suivant

les points doubles par continuité»; S(ß) s'identifie donc à S (a).
Dans les deux cas l'égalité V2(a;s) V2(ß; s) résulte de ce que Xa,P(s)

est nul si x ou y appartient à P, pour le choix indiqué de a.

On note encore V2'-W-+ Z l'invariant des nœuds qui vient d'être
défini. Il est clair qu'il s'agit d'un invariant de Vassiliev de degré 2. La
proposition 4.2.3, ou plus directement les propositions 4.1 et 4.2.4 et le fait
que V2(T) vaut 1, impliquent:

Proposition 4.2.9. Soit f:yK^A un invariant de Vassiliev d'ordre
inférieur ou égal à 2. Alors:

Commentaires

Soit CK(t) le polynôme de Conway d'un nœud K [Co]; CK(t) est un
polynôme pair à coefficients entiers:

Bar-Natan a montré (voir par exemple [Ba]) que le coefficient c2n est un
invariant de Vassiliev de degré inférieur ou égal à 2n. La proposition 4.2.9
montre que les invariants c2 et V2 coïncident (CT{t) 1 + t2).

La théorie que nous avons faite de l'invariant V2 est à comparer à celle
du chapitre III de [Ka].

f(K)= V2(K) f (T)

Cxif) — 1 + c2(K) t2 + c^{K) t4 +
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Variantes de l'expression de V2

Si dans la démonstration de 4.2.3 on remplace infa_1(z) par supa_1(z)
on obtient:

/(*) ]ps^me{P)K,p{s))f{T)
avec X*P(s)- (1 - * (s)) ôa,^(s) &x(s„) e7(s0), c'est-à-dire

Xatp(s*). On a donc aussi

(4.2.10) V2(s) YPseC X* P(s)

L'égalité

est en fait équivalente à (3.1). On a en effet

^e^me(p)(x^(s)""xLW) ï,xeXK,As)cx
avec

Cx= zx(Sa)CL}>Xty<xe(x,y)Ey(sa)-

Le fait que V2 puisse s'exprimer à la fois par les formules (4.2.7) et (4.2.10)
a une explication plus conceptuelle. Cela traduit deux propriétés de cet

invariant :

— L2(i^*) V2(K) (nous dirons que l'invariant K2 est pair);

— V2{K) V2(K), K désignant le nœud obtenu à partir de K par composition

à la source avec un difféomorphisme de S1 renversant l'orientation.

Ces égalités sont conséquence de la théorie du paragraphe 1 : les invariants
K*-> V2(K) - V2(K*) et K V2(K) - V2(K) sont triviaux parce que ce

sont des invariants de Vassiliev de degré inférieur ou égal à 1.

Compte tenu de (2.1) ou (4.2.2), on a

2(Xa,p(s) + ^*p(^)) EpCS") — £p($a) î

si bien que l'invariant V2 est encore donné par

(4.2.11) 4 V2(s) e

ce qui en posant E(s)Y
Pe ^ (X) e(p) £p(s) s'écrit

(4.2.12) 4 V2(s) E(s)-Expliquons pourquoi une telle expression était prévisible. Considérons

l'application f: S ^ Z induite par un invariant de Vassiliev de degré 2, à
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valeurs dans Z, dont la fonction de poids est W2 (voir proposition 1.5 (a)).

D'après ce que nous avons dit au paragraphe 2 il existe des entiers cXix
parcourant X, et c0 tels que l'on a

4 f (s) E (s) + j ^ ^ (^) ^0 •

Comme nous avons vu ci-dessus que / doit être paire (/(s) /(s*)) les c*

sont nuls; comme f(sa) doit être nul c0 vaut - E(sa).

Voici pour terminer une application amusante de (4.2.11):

Proposition 4.2.13. Soit a une immersion générique de S1 dans

R2. Soit co le point de S (a) défini par s*(co) 1 pour tout x
dans X(a). Alors les conditions suivantes sont équivalentes:

(i) a possède deux points doubles enlacés;

(ii) K2(cPco)>0;

(iii) il existe un nœud au-dessus de a qui est non trivial.

Démonstration de l'implication (i) =* (ii). Pour tout P dans ^2 (X) et

tout a dans S1 - X le terme sP(co) - 8P(5,0) qui apparaît dans l'expression
(4.2.11) de K2((pœ) vaut 0 ou 2. Il faut donc montrer que (i) implique en fait
qu'il existe P et a avec e(P) 1 et EP(sa) — - 1. Soient x et y deux points
doubles enlacés de a. Choisissons a dans S1 — X de façon à ce que x soit
le plus petit des points doubles pour l'ordre induit sur X; la relation (3.1)
devient HzeX_{x]e(x> z)Ez(sa) 0. Il existe donc y' dans X - {x} avec

e(x>y') 1 et 0. Ou Ex (Sa) Ey (sa) OU £x (sa) Zy' (sa) est

égal à - 1.

Démonstration de l'implication (iii) => (i). Si e(P) 0 pour tout P dans

#2 (X) alors tout diagramme de nœud au-dessus de a peut être ramené au
diagramme trivial par une succession de mouvements de Reidemeister de

type I.

4.3. Invariants de Vassiliev de degré inférieur ou égal à 3

Heuristique

Soit / : ,/P Z un invariant de Vassiliev de degré 3 dont la fonction
de poids est W3 (voir proposition 1.5 (b)). Comme l'invariant

f(K) + f(K*) est de degré inférieur ou égal à 2, on a d'après 4.2.9

f(K) + f(K*) (/(T) + /(P*)) V2(K)



310 J. LANNES

ou encore

f(K) + f(K*)= -2 f(H)V2(K)
(l'égalité f(KA) f(T) + f(T*) + 2 f(H) du paragraphe 1 montre que
l'on a f(T) + f(T*) - 2f(H) pour / de degré inférieur ou égal à 3); il
en résulte que l'invariant / + f(H) V2 est impair (change de signe quand on
remplace K par K*). On peut donc supposer sans perdre de généralité
que / est impair ce que nous ferons ci-dessous.

Soit a une immersion générique de S1 dans R2. On considère toujours
l'application / : S S (a) Z induite par l'invariant /; elle est de degré
inférieur ou égal à 3 et impaire (/Cs*) -

Soit P {x,y,z} une partie à 3 éléments de X. On pose
w{P) sup (TV - 1,0), TV désignant le nombre de paires, contenues dans P,
de points enlacés. En d'autres termes on pose:

w(P) e(x, y) e(x, z) + e(y, x) e(y, z) + e(z, x) e(z, y)

- e(x>y)e{x,z)e(y,z) ;

w({x, y, z}) sera également noté w(x, y, z). Dans le langage de [Ba], a _1 (P)
est un diagramme à 3 cordes; on a avec le symbolisme de cet article:

w(@) 2

et w est nul sur les trois autres éléments de

On pose enfin

X*3 (X) désignant le nombre de parties à 3 éléments de X.

Comme précédemment 8/ s'écrit

8 f(s) W(s) + Y,Qe z?l{X) cq£q(s) + HxeX cx&x(s) + c0

et puisque / est impaire les coefficients cQ et c0 sont nuls:

8f(s) W{s)+ lxeXcxzxis)

On détermine les coefficients cx de la façon suivante. On fixe une origine a

dans 51 - X. On considère comme au paragraphe précédent les composantes

connexes x_ et x+ de S1 - X respectivement adjacentes à gauche et à droite
à infa-100- Compte tenu de f(sx_) 0 et f(sx+) 0, il vient

(4.3.1) cx(Wisx+)-W;il est clair que ce quotient est entier.
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Remarque. Posons s_ s+ sx+ et introduisons également les

sections descendantes et s'_ correspondant aux composantes connexes de

S1 - X respectivement adjacentes à gauche et à droite à supa_1(x). On

obtient pareillement

C* (^«) - W(s'_))/2sx(s'_)- - x(s_)

On doit donc avoir

W(s+) - W(s_) + W(s'+) - W(s'_) 0

En fait cette relation est conséquence de (3.2.1) et (3.2.2).

L'exploitation de (4.3.1) donne

(4.3.2) 8 f(s)=l,Pep3mw(.P)Via.p(s)

en posant

P-a, {x,y, z} (^) (^) (^) C^) — (^) &z

— £.x(Sy _) &y (à) &z(Sy _) ~ &X (SZ &y (S g 8^ (»S")

A l'aide de (4.2.6) et des relations d'intersection du paragraphe 3 l'expression
(4.3.2) se transforme en

(4.3.3) 8 f(s) ZPe^3(X)

le terme va)P(5') étant défini de la façon suivante. On écrit P {x, y, z} avec

x < y < z (toujours pour la relation d'ordre sur X définie par a) et on pose

^ 3 ^ Vfl, p (s) Zx (s) 8y (s) 8, (s) - Zx (s) 8y (sa) Zz (sa)

+ 8^ (sa) Zy (s) Sz (sa) — (6"a) 8^ (.S'a) £z (51)

On a encore:

^4 ^ ^ Va, P ($) 4 (£x (s) 'ko, {7, z} (s) ~ &y C$) ^a, {x, z} (&)

4" ($) {A:, 7} (^)) •

Théorie «ab initio» de l'invariant V3

On oublie maintenant l'heuristique précédente (voilà pourquoi nous
n'avons pas détaillé le passage de (4.3.2) à (4.3.3)) et on considère a priori le
second membre de (4.3.3).

Proposition 4.3.6. La somme & {X) w(P) va,P(s) est indépen-
dante du choix de a.

b
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Démonstration. On reprend les notations de la démonstration de la

proposition 4.2.6. Il faut montrer:

E
P s *3 (JO

W (P) V*. A5) lpe m V„, p (S)

Soit P une partie à 3 éléments de X. Si i n'appartient pas à P alors va,p(s)
et VbtP(s) coïncident. On suppose maintenant que / appartient à P. On

suppose tout d'abord que w(P) est non nul. On écrit P {/, x,/} avec

i < x < j pour l'ordre sur X défini par a. Pour l'ordre défini par b, on a:

x < j < i ou x < / < y, suivant que i et j sont enlacés ou non. Dans le premier
cas va>P(s) et vbtP(s) coïncident à nouveau; dans le second on a

Vb,p(s) - Va,p(s) 2(Si(s)Sj(sa) + Et(sa) Zj(s))

Il en résulte dans les deux cas:

w(P)(Vb,p(s)-va,p(s))

2(8/(5)8 j(sa)+ 8/ (sa)Ej(5))(1 -
On observe ensuite que cette relation est encore vérifiée si w(P) est nul. On
conclut alors à l'aide de la relation d'intersection (3.2.2).

On pose (provisoirement, la notation définitive sera canonisée après 4.3.8):

g(V= EP^îW^)v,p(â).
Théorème 4.3.7. L'entier g (s) est un invariant de la classe d'isotopie

du nœud cp5.

Démonstration. On reprend les notations de la démonstration du
théorème 4.2 8. La raison de l'invariance par le mouvement I est identique.
Pour vérifier l'invariance par les mouvements II et III on choisit l'origine a
de la même façon et on utilise l'expression (4.3.5) du terme vafp(s).

Invariance par le mouvement II (figure 11).

On a

g(a;s) - g(ß;s)
4 Y,Qe &>2(X_fx y))(w({x} u Q)ex(Sa)+

et l'on conclut en observant que l'on a:

— w({x} u Q) w({y} u Q) ;

Invariance par le mouvement III (figure 12).

En accord avec les identifications dont nous avons convenues, nous posons

X X(a) X(ß). Les applications de X(a) x S (a) et ^f(ß) x S(ß) dans

{ ± 1}, (x, s) - s*(s), sont identifiées. Par contre les applications
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e: &2(X(a))->{0,1}et
w:^3(X(a))-»{0,1,2} et w: &3(X(ß))-> {0,1,2}

différent; nous les notons ci-dessous ea et eß, wa et wß.
On a par inspection:

S(ß;s)-*(a;5)

((wp(x,z,r) - wa(x,z, r))zx(sa) + (wß(y, r) - wa(y, z, rj) £,($„))

^-(7, {z,r)(s)

Il suffit donc de montrer que l'on a

(wp (x, Z, r) - wa (x, Z, r)) ex (sa)

+ (wp (y, z, r) - wa (y, z, r)) 0

pour tout r dans X - {x, y, z}

Pour cela on écrit

w(-, z, r) e(-, r) e(z, r) + e(z, r) e(z, -) + (1 - e(z, r)) e(z, -)e(r, -)
et l'on fait les observations suivantes:

— Les enlacements ea —, r) et eß (-, r) coïncident.

— En considérant la relation d'intersection (3.1) à la fois pour a et ß, on
obtient

ea(z,x) zx{Sa) + ea(z,y)zy(sa) eß(z, x) sx(sa) + eß(z,y) sy(sa)

— De même en considérant la relation d'intersection (3.2.1) à la fois

pour a et ß, on obtient

(1 - ea(z,r))ea(z,x)ea{r,x)ex(sa)+ (1 -
=(1 - ep (z, r)) eß(z, x) eß(r, x) £x(sa) + (1 - ep (z, r)) ep y) ea (r, y) sy (sa)

Remarque (suscitée par une discussion avec G. Masbaum). Considérons
pour k 1 et 2 les sommes:

^6.^3 (X), w(P) k ^a> '

La démonstration de 4.3.6 montre en fait que ces sommes sont indépendantes
de a si bien que l'on peut poser:

S(k) (Ct, S) — Yép
£ vv(p) k Ma, p(s)

et écrire g(a;s) g{i)(a;s) + 2g{2)(a;s).
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La démonstration ci-dessus montre que g(i) (a ; s) et g(2) (a ; s) sont invariantes

par les mouvements de Reidemeister I et II; par contre elles ne sont pas en

général invariantes par III.
D'après (4.3.5) l'entier g (.s) est divisible par 4. En fait:

Lemme 4.3.8. L'entier g (s) est divisible par 8.

Démonstration. Puisque g est nulle sur les sections descendantes il suffit
de montrer que la valeur de g modulo 8 est constante.

Soient s un élément de S et x un élément de X; on choisit a de telle sorte

que x soit le plus petit élément de X pour l'ordre défini par a. On a:

8*0?) (g (s) - SCs + x)) 2 £ee g?2(X-M)W«X}u Ô)(8e(5) -
Il faut donc vérifier que la somme au second membre, disons Gx(s), est

divisible par 4. On pose Q {y, z} avec y < z; grâce à la congruence:

By (s) Bz (*$") &y (sa) Bz (^Sf) By (iS) Bz (£#) — 8^ (S#) Bz (vS") mod. 4

il vient: Gx(s) Hx(s) mod. 4, en posant:

HAs) ,z)e(X-W)2,y<zy,Z)(sy(s)sASa)~8,, (Se) S* (s))

Cette somme s'écrit HyeX_{x] £y(s) cx,y en posant:

cx y E v f w(x,y,z)zz(sa) - Y v w(x,y, z) Zz(Sa)x'y ^ zeX - {x,y},z> y * ^ z e X - {x, y}, z < y v ^

Comme Hx(sa) est nul, Hx(s) s'écrit aussi YjyeX_[x] (ty(s) ~ £y(sa)) cx,y et

il suffit finalement de montrer que cXiy est pair, c'est-à-dire:

mod-2-

Cette congruence résulte encore des relations d'intersections du
paragraphe 3 (écrire w(x,y,z)(1 - e(e(y, +
+ e(x,y)e(x,z)).

On note enfin V3 l'application de S dans Z définie par la formule:

(4.3.9) BFj(s) EPs

Comme au paragraphe 4, on note encore V3 : .XV ~^Z l'invariant des nœuds

associé. Il est clair qu'il s'agit d'un invariant de Vassiliev de degré 3.

Proposition 4.3.10. Soit f:.yV^A un invariant de Vassiliev d'ordre
inférieur ou égal à 3. Alors:

f(K) V3(K)(f(T)+ f(H)) -
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Si la multiplication par 2 est injective dans A, cette formule peut encore

s'écrire:

f (K) V3(K)((/(7")- f(T*))/2)+ ((/ + f(T*))/2)

(les éléments de A,f(T) - f(T*) et f(T) + sont uniquement
divisibles par 2).

Démonstration. La proposition 1.5 (b) et la proposition 2.5 donnent:

Proposition 4.3.11. Soit P une partie à trois éléments de X. On a:

(Apf)(s) w(P) £p(s) (/(T) + f{H))
Il en résulte que l'invariant K^ f{K) - V^(K) (f(T) + f(H)) est de degré

inférieur ou égal à 2. On applique alors 4.2.9. Pour conclure il suffit de savoir

que V3 (T) vaut 1 ce qu'on vérifie par exemple avec le diagramme de la

figure 1 (la somme au second membre de (4.3.9) ne contient dans ce cas qu'un
terme).

Commentaires

Soit JK(t) le polynôme de Jones d'un nœud K [Jo] (rappelons que JK(t)
appartient à Z[t,t~l])\ on considère dans Q[[w]] la série formelle:

JK(e«)= 1 +jl(K)u+j2(K)u2+j3(K)ui +

Birman et Lin, et Bar-Natan, ont montré que le coefficient jn est un
invariant de Vassiliev de degré inférieur ou égal à n [BL] [Ba]; l'égalité
Jk*(1) se traduit par le fait quey„ est pair si n est pair et impair
si n est impair. La proposition 4.3.10 donne (rappelons que l'on a

jT(t) t+ t3 - t4)

JK(e") 1 - 3 V2 (K)u2 - 6 V3 (K)u3 mod. u4

ou encore

JK{t) 1 - 3 V2(K)(t-l)2+ 3(F2 (K)-mod. (t - l)4

ou enfin

Jf(1) - 6V2(K) ; A3)(l) 18(K2(JC) - 2
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