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302 J. LANNES
3. RELATIONS D’INTERSECTION

On utilise les notations du paragraphe précédent. On fixe une «ori-
gine» a dans S! — X ; on rappelle que le choix de a¢ détermine une relation
d’ordre total sur S! — {a} et sur X. On décrit dans ce paragraphe certaines
relations entre les entiers e(x, y) et €,(s,) qui joueront un rdle crucial dans
le prochain paragraphe.

3.1. Soit x un point de X. Soit D un petit disque fermé de R? de centre x;
on note I, et I, les deux composantes connexes de S! — o~ 1(D —9dD). Le
point a se trouve a l’intérieur de I'une de ces composantes, disons /;. On
considére maintenant S! plongé de fagon standard dans R? et on note
C;,i=1,2, la réunion de I; et du segment J; joignant les deux extrémités
de I; (voir figure 7). On note encore a: C; — R? le prolongement affine
de a;; on observe que a(J;) et a(J;) ne se rencontrent pas. La 0-chaine

))

représente dans Hy(R?; Z) ’intersection des deux cercles «immergés» a.(C;)
et a(C;); on a donc la relation suivante:

e(x:y)gy(sa)y— Z e(x,y)sy(sa)y

yeX,y<x yeX,y>x

(31) E E(X, _)7) €y (Sa) = Z e(x: y) €y (Sa) .

yeX,y<x yeX,y>x

3.2. Soient maintenant x et y deux points de X avec e(x, y) = 0et x < y. On
pose o~ 1(x) = {§, E*} et a ~1(py) = {n,n*}avec { < £€* et 1 < n*. On a dans
St — {a} deux configurations possibles:

) E<n<n*<Er

2) &< &*<n<n*.

Premier cas (figure 8).

En considérant I’intersection de a(C;) et a.(C,) on obtient:

e(x, z)e(y, 2) e, (s0) = ), e(x, 2) e(y, 2) €, (s,) -

ZzeX,z<x zeX,z2>)

On observe également que pour x < z < y on a e(x, z)e(y,z) = 0.

Deuxieme cas (figure 9).

En considérant I’intersection de a(C;) et a(C,) on obtient cette fois:

e(x,z)e(y,2)e.(s,) =0

ZzeX,x<z<y

et I’on observe que pour z< xou z>yon ae(x,z)e(y,z) =0.
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Supposons encore x < y mais ne supposons plus e(x, y) = 0, il résulte de ce
qui précéde que ’on a dans tous les cas les relations suivantes:

Yk oee (I—en ) elx 2) e(y, 2) €2 (s0)
=Y. .y, A —eny) el 2)e(r, 2)&:(50) ;
322 X, ..., U-exy)exz)er z)e(s) =0.

(3.2.1)
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FIGURE 7 FIGURE 8 FIGURE 9

4. EXPRESSION DES INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR
OU EGAL A 3 EN TERMES DE POINTS DE CROISEMENT

Soient f: .7 — A un invariant des nceuds et o une immersion générique
de S! dans R2. On note encore abusivement f:S = S(a) > 4 P'application
induite par I’invariant /. On continue a utiliser les notations du paragraphe 2.

4.1. INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR OU EGAL A 1

PROPOSITION 4.1. Tout invariant de Vassiliev de degré inférieur ou égal

a 1 est nul. (Rappelons que nous supposons qu’un invariant est nul sur le nceud
trivial.)

Démonstration. Soient f: ./ — A un invariant de Vassiliev de degré infé-
rieur ou €gal a 1 et a une immersion générique de S! dans R2. On fixe une
origine @ dans S! — X. L’application f:S = S(0) > A, qui est de degré
inférieur ou égal a 1, est de la forme:

fG)=cg+ X _ 8s,:()cy

(notations du paragraphe 2). Le coefficient ¢, = f(s,) est nul; on montre
qu’il en est de méme pour les coefficients ¢, de la fagon suivante. Soient s,
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