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302 J. LANNES

3. Relations d'intersection

On utilise les notations du paragraphe précédent. On fixe une
«origine» a dans S1 - X; on rappelle que le choix de a détermine une relation
d'ordre total sur S1 - {a} et sur X. On décrit dans ce paragraphe certaines

relations entre les entiers e(x,y) et sx(sa) qui joueront un rôle crucial dans

le prochain paragraphe.

3.1. Soit x un point de X. Soit D un petit disque fermé de R2 de centre x;
on note 7i et 72 les deux composantes connexes de S1 - a ~l(D - dD). Le

point a se trouve à l'intérieur de l'une de ces composantes, disons I\. On
considère maintenant S1 plongé de façon standard dans R2 et on note
C/, / 1, 2, la réunion de 7/ et du segment 7/ joignant les deux extrémités
de 7Z (voir figure 7). On note encore a:C/->R2 le prolongement affine
de a| /. ; on observe que a(/i) et a(/2) ne se rencontrent pas. La 0-chaîne

£
s x, „ < * efi M5") y -£

e ^ eix, y) sy(sa) y
représente dans 770(R2;Z) l'intersection des deux cercles «immergés» a (Ci)
et a(C2); on a donc la relation suivante:

(3.1) *.,<,*(*'-»o M*«) M5«) •

3.2. Soient maintenant x et y deux points de X avec e{x, y) 0 et x < y. On

pose a -1(x) {£, £*} et a _1(j) {q, r|*} avec £ < et r| < q*. On a dans
S1 - {a} deux configurations possibles:

1) £, < r| < r|* < £*;

2) E, < < rj < r|*.

Premier cas (figure 8).

En considérant l'intersection de a (Ci) et a(C2) on obtient:

On observe également que pour x < z < y on a e(x, z) e{y, z) 0.

Deuxième cas (figure 9).

En considérant l'intersection de a (Ci) et a(C2) on obtient cette fois:

0

et l'on observe que pour z<x ou z>y on a e(x} z)e(y, z) 0.
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Supposons encore x < y mais ne supposons plus e(x, y) 0, il résulte de ce

qui précède que l'on a dans tous les cas les relations suivantes:

(3.2.1)
S» e** < ' 0 " e(X'^ eiX' Z) £(y' Z) {Sa)

'

E!eïiî>,0- e(x>y)) e(x> z) e(y> ez(Sa) ;

(3.2.2) £ (\-e(x,y))e(x,z)e(y,z
z£st,x<.z<.y

Figure 7 Figure 8 Figure 9

4. Expression des invariants de Vassiliev de degré inférieur
OU ÉGAL À 3 EN TERMES DE POINTS DE CROISEMENT

Soient f: jV A un invariant des nœuds et a une immersion générique
de S1 dans R2. On note encore abusivement /: S 5(a) A l'application
induite par l'invariant /. On continue à utiliser les notations du paragraphe 2.

4.1. Invariants de Vassiliev de degré inférieur ou égal à 1

Proposition 4.1. Tout invariant de Vassiliev de degré inférieur ou égal
à 1 est nul. (Rappelons que nous supposons qu'un invariant est nul sur le nœud
trivial.)

Démonstration. Soient / : JV A un invariant de Vassiliev de degré inférieur

ou égal à 1 et a une immersion générique de S1 dans R2. On fixe une
origine a dans S1 - X. L'application /: S S(a) -+ A, qui est de degré
inférieur ou égal à 1, est de la forme:

fis) C0 +ExeA.Ôsa,x(5)Cx

(notations du paragraphe 2). Le coefficient c0 est nul; on montre
qu'il en est de même pour les coefficients cx de la façon suivante. Soient st
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