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Dans cette note nous traitons «élémentairement» le cas m ^ 3.

Nous dirons que deux points doubles (au but) x et y de y sont enlacés si

les 0-sphères M/_1W et \|/_10>) sont enlacés dans S1.

Proposition 1.4. Soient \p un nœud singulier à m points doubles
et f un invariant de Vassiliev de degré inférieur ou égal à m. S'il existe

un point double de \j/ qui n 'est enlacé avec aucun autre alors f(\y) est nul.

Pour une démonstration voir par exemple [Ba].
Soit maintenant \|/ un nœud singulier à 2 ou 3 points doubles. Quand \j/

a 2 points doubles nous posons W2(\v) 1 si ces deux points doubles sont
enlacés et 0 sinon. Quand y a 3 points doubles nous posons
W3(\\f) sup (N- 1,0), N désignant le nombre de paires de points doubles
enlacés.

La proposition 1.4 et les calculs d'invariants de nœuds singuliers que nous

avons donné ci-dessus comme exemples conduisent à l'énoncé suivant:

Proposition 1.5. (a) La valeur d'un invariant de Vassiliev f de degré

inférieur ou égal à 2 sur un nœud singulier \j/ à 2 points doubles est

donnée par
/(V) W2(y)f(T)

(b) La valeur d'un invariant de Vassiliev f de degré inférieur ou égal à 3

sur un nœud singulier \j/ à 3 points doubles est donnée par

/(xi/) W3(y) (f(T) + /(//))

2. Formalisme relatif aux nœuds de R3

AU-DESSUS D'UNE IMMERSION GÉNÉRIQUE DE S1 DANS R2

On reprend le formalisme de [La].
Soit a: S1 R2 une immersion générique. On note respectivement X et X

l'ensemble des points doubles de a à la source et au but. La restriction de

a:X^X est un revêtement (trivial) à deux feuillets dont l'ensemble des

sections est noté S. Quand nous serons amenés à faire varier a, nous

préciserons ces notations en ^(a), X(a), 5(a). L'ensemble 5 est un espace

affine sous l'ensemble &(X) des parties de X vu comme un Z/2-espace
vectoriel: la différence entre deux sections sets' est la partie {x; s(x) =£ s'(x)}.
Nous nous autorisons par la suite à identifier LP (X) avec {0, 1}* (alors que

l'on préférait considérer (Z/2)x dans [La]) ou avec le Z/2-espace vectoriel de
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base X. On note enfin £ l'involution de X associée au revêtement

X^X.
Un diagramme de nœud n'est rien d'autre que la donnée (a; s) d'une

immersion générique a de S1 dans R2 et d'un élément s de S (a). Précisons.

A une section s1 on fait correspondre un «nœud au-dessus de a» de la façon
suivante. Soit 05: S1 -> R une fonction vérifiant 05(s,(x)) > 0*((s,(x))*) pour
tout x dans X; l'application cp5 a x Qs: S1 -> R3 est un plongement dont la
classe d'isotopie est indépendante du choix de 0S.

Sections descendantes

- Soit a un point de S1 - X, on définit une section, notée sa, du revêtement

X X de la façon suivante. On munit S1 - {a} de la relation d'ordre induite

par un difféomorphisme orienté de S1 - {a} sur R et on pose

sa(x) infa-1(X)- Il est clair que ne dépend que de la composante
connexe de a dans S1 - X. Nous appelons ce type de sections des sections

descendantes. Le tracé des nœuds correspondants explique cette terminologie;
ces nœuds sont triviaux.

Relation d'ordre sur X induite par le choix d'un point a de S1 - X
Un point a de S1 — X étant fixé, on munit X de la relation d'ordre image

réciproque de celle de S1 - {a} par la section descendante sa. On a donc
x < y, x et y désignant deux points de X, si infa_1(x) < infa-1O0.

Coordonnées sur S

Soient o un point de S et x un point de X. Nous notons ô0,*: S {0, 1}
l'application 5 ^ (s - o) (x).

Nous notons zx:S~>{± 1} l'application 5 dét(a'(s(x)), a'(fr(x))*))
(on identifie a avec une application Z-périodique de R dans R2). Cette
notation est en accord avec le premier paragraphe: si l'on considère cp5

comme une désingularisation dans R3 de a on a bien sx(s) 8x(cp5).

Les applications (&0,x)xex et (sx)A:e^ doivent être vues comme des
coordonnées sur S. Elles sont liées par la relation

(2.1) sx(s) (- l)«o,xW 8,(o) (1 - 2&0tX(s))ex(o)

«Calculus» dans As

Un invariant des nœuds à valeurs dans A induit une application de S
dans A. Aussi aurons-nous besoin d'un peu de «calculus» dans As.
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Soit / une application de S dans un groupe abélien A. Soit x un point
de X, on pose (Axf)(s) f(s + x) - f(s). Soit P une partie de X, on
note AP Pendomorphisme de As composé des endomorphismes Ax,
x parcourant P. La proposition ci-dessous (dont la vérification est laissée au
lecteur) est un genre de formule de Taylor.

Soit u une application 1}; on note encore u l'application
£?(X) -> {0, 1} définie par u(P) "M-

Proposition 2.2. Soit f une application de S dans un groupe
abélien A. Pour tout s dans S et tout u dans {0, 1}* on a:

f{s+u)
Comme à l'ordinaire cet énoncé admet la variante ci-après. On pose

&o,p(s) n^p ào,x(s).

Proposition 2.3. Soit f une application de S dans un groupe
abélien A. Pour tout s et tout o dans S on a:

fis) XPe^(jr)ôo,p(s)(A P.Réciproquement soient (cP)Pe y^X) une famille d'éléments de A
indexée par £P(X) et / l'application de S dans A définie par f(s)

&o,p(s)cp- On vérifie alors que l'on a (ÀP f)(o) cP ce qui
montre que toute application de S dans A s'écrit de façon unique sous la forme
Ed ^ô0)PCp. On vérifie que l'on a plus généralement

P e -v (X

(Ap/) (s) mXSPi-i)^)iQe^Q,P?>o,Q-p(s)cQ.
Proposition-Définition 2.4. Soient f une application de S dans

un groupe abélien A, m un entier, o un point de S. Les deux conditions
suivantes sont équivalentes:

(i) APf 0 pour toute partie P à m + 1 éléments de X;
(ii) (ÀP/)(o) 0 pour toute partie P de X dont le cardinal est

strictement supérieur à m.

Si ces conditions sont vérifiées on dit que f est de degré inférieur ou

égal à m.

On pose à nouveau £p(s) Soit / une application de S

dans A de degré inférieur ou égal à m. Compte tenu de (2.1), on peut écrire
2mf sous la forme

2mf Y,
Pç 0>^m{x)tpcp >
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(Cp)Pe ,^<m(x) désignant une famille d'éléments de A indexée par l'ensemble

m (X) des parties de X dont le cardinal est inférieur ou égal à m. Si la

multiplication par 2 est injective dans A cette écriture est unique. Si de plus

A est un Z[^-module alors toute application f de S dans A s'écrit de façon

unique sous la forme

f — Up
6

£p cp -

Dans ces coordonnées (les coordonnées sx) on a

/(**)=
s* désignant l'élément de S défini par 5* (x) (s(x))* (l'involution dans

S, s 5*, correspond dans JE à l'image dans un miroir) et | P | désignant le

cardinal de P.

Différences successives et nœuds singuliers
A cause de la formule (1.1) il peut être avantageux de substituer dans le

formalisme précédent à l'endomorphisme Ax de As l'endomorphisme Dx
défini par (Dxf)(s)= - zx(s) (À*/) (s). On observera que Dx et Dy
commutent pour tous x et y dans X et que Dx est de carré nul. On note

encore DP le composé des Dx, x parcourant une partie P de X; DP et AP sont
reliés par la formule (DP f) (s) (- l)'pl sP(s) (AP f) (5).

Soit \j/5jp le nœud singulier obtenu en remplaçant dans la définition de (p5

la fonction par une fonction 05îjP vérifiant 055p(s(x)) ©^^((^(x))*) pour
tout x dans P et Qs,p(s(x)) > 0j,p((^(x))*) pour tout x dans X - P; la
formule (1.1) donne:

Proposition 2.5. Soit f : ,,-f A un invariant des nœuds. En notant
encore f: S A Vapplication s^> f (ys), on a:

f(ys,P) CDPf)(s) (- l)\e\zP(s)(Apf){s)

Cette proposition montre que la définition 2.4 est bien en accord avec la
définition 1.3: une application de S dans A induite par un invariant de Vassiliev
de degré inférieur ou égal à m est elle aussi de degré inférieur ou égal à m.

Enlacement des points doubles de a

Soit P {x,^} une partie à deux éléments de X on pose e(P) 1 ou 0

suivant que x et y sont enlacés (rappelons que ceci signifie que les 0-sphères
a ~1 (x) et a-1O0 sont enlacés dans S1) ou non; e{{x,y}) sera également
noté e(x,y). Dans le langage de [Ba], a_1(P) est un diagramme à 2 cordes
et on a avec le symbolisme de cet article:
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