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298 J. LANNES

Dans cette note nous traitons «élémentairement» le cas m < 3.
Nous dirons que deux points doubles (au but) x et y de v sont enlacés si
les O-spheéres y ~1(x) et y ~1(y) sont enlacés dans S!.

PROPOSITION 1.4. Soient y un nceud singulier @ m points doubles
et f wun invariant de Vassiliev de degré inférieur ou égal a m. S’il existe
un point double de  qui n’est enlacé avec aucun autre alors f(y) est nul.

Pour une démonstration voir par exemple [Ba].

Soit maintenant y un nceud singulier & 2 ou 3 points doubles. Quand vy
a 2 points doubles nous posons W,(y) = 1 si ces deux points doubles sont
enlacés et W,(y) = 0 sinon. Quand y a 3 points doubles nous posons
Wi(y) = sup(N — 1, 0), N désignant le nombre de paires de points doubles
enlacés.

La proposition 1.4 et les calculs d’invariants de nceuds singuliers que nous
avons donné ci-dessus comme exemples conduisent a 1’énoncé suivant:

PROPOSITION 1.5. (a) La valeur d’un invariant de Vassiliev [ de degré
inférieur ou égal a 2 sur un nceud singulier Y a 2 points doubles est
donnée par

S = Wa(w) fF(T) .

(b) La valeur d’un invariant de Vassiliev [ de degré inférieur ou égal a 3
sur un neeud singulier y a 3 points doubles est donnée par

fw) = wiw) (f(T) + f(H)) .

2. FORMALISME RELATIF AUX NCEUDS DE R3
AU-DESSUS D’UNE IMMERSION GENERIQUE DE S! DANS R?

On reprend le formalisme de [La].

Soit a: S! = R2 une immersion générique. On note respectivement XetX
I’ensemble des points doubles de o a la source et au but. La restriction de
o: X — X est un revétement (trivial) & deux feuillets dont I’ensemble des
sections est noté S. Quand nous serons amenés a faire varier o, nous
préciserons ces notations en X (a), X(a), S(a). L’ensemble S est un espace
affine sous 1’ensemble Z7(X) des parties de X vu comme un Z/2-espace
vectoriel: la différence entre deux sections s et s” est la partie {x; s(x) # s'(x)}.
Nous nous autorisons par la suite & identifier & (X) avec {0, 1}¥ (alors que
I’on préférait considérer (Z/2)* dans [La]) ou avec le Z/2-espace vectoriel de
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base X. On note enfin & — £* P’involution de X associée au revétement
XX

Un diagramme de ncoeud n’est rien d’autre que la donnée (a;s) d’une
immersion générique o de S! dans R? et d’un élément s de S(a). Précisons.
A une section s on fait correspondre un «nceud au-dessus de a» de la fagcon
suivante. Soit 8,: S! = R une fonction vérifiant 0,(s(x)) > 0,((s(x))*) pour
tout x dans X; I’application ¢, = o X 0,: S = R3 est un plongement dont la
classe d’isotopie est indépendante du choix de 6,.

SECTIONS DESCENDANTES

- Soit @ un point de S — X , on définit une section, notée s,, du revétement
X — X de la facon suivante. On munit S! — {@} de la relation d’ordre induite
par un difféomorphisme orienté de S! - {a} sur R et on pose
S.(x) = infa~!(x). Il est clair que s, ne dépend que de la composante
connexe de a dans S! — X. Nous appelons ce type de sections des sections
descendantes. Le tracé des nocuds correspondants explique cette terminologie;
ces nceuds sont triviaux.

RELATION D’ORDRE SUR X INDUITE PAR LE CHOIX D’UN POINT ¢ DE S! — X

Un point a de S! — X étant fixé, on munit X de la relation d’ordre image
réciproque de celle de S' — {a} par la section descendante s,. On a donc
X <y, x et y désignant deux points de X, si infa ~!(x) < infa “1(»).

COORDONNEES SUR S

Soient o un point de S et x un point de X. Nous notons d,,x:8—{0,1}
I’application s = (s — 0) (x).

Nous notons &,:S — {+ 1} Papplication s+ dét(a’(s(x)), a’((s(x))*))
(on identifie a avec une application Z-périodique de R dans R?). Cette

notation est en accord avec le premier paragraphe: si ’on considére Qs
comme une désingularisation dans R* de a on a bien &,(s) = ¢, (®s).

Les applications (8,,x)xcx €t (€¢)yex doivent &tre vues comme des
coordonnées sur S. Elles sont liées par la relation

(2.1) €x(8) = (= )% xO g (0) = (1 — 28, ,(5)) e, (0) .

«CALCULUS» DANS A4S

Un invariant des nceuds & valeurs dans 4 induit une application de S
dans A. Aussi aurons-nous besoin d’un peu de «calculus» dans A45.
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Soit f une application de S dans un groupe abélien A. Soit x un point
de X, on pose (A, f)(s) = f(s+x) — f(s). Soit P une partie de X, on
note Ap l’endomorphisme de A4S composé des endomorphismes A,
x parcourant P. La proposition ci-dessous (dont la vérification est laissée au
lecteur) est un genre de formule de Taylor.

Soit u# une application X — {0, 1}; on note encore u [’application
Z(X) — {0, 1} définie par u(P) = erP u(x).

PROPOSITION 2.2. Soit f wune application de S dans un groupe
abélien A. Pour tout s dans S et tout u dans {0,1}X on a:

f+uwy =3, . tP)Brf)(s) .

Comme a l’ordinaire cet énoncé admet la variante ci-aprés. On pose

60,1)(5) = erP 6o,x(S)'

PROPOSITION 2.3. Soit [ wune application de S dans un groupe
abélien A. Pour tout s et tout o dans S on a:

F6) =T o i B0.p(8) (A £) (0) .

Réciproquement soient (cp)pec #x) une famille d’éléments de A
indexée par Z(X) et f l’application de S dans A définie par f(s)
= ZPE Py O, p(8)cp. On vérifie alors que 'on a (Ap f)(0) = cp ce qui
montre que toute application de S dans A4 s’écrit de facon unique sous la forme

EPG ) So.pCp. On Vérifie que 'on a plus généralement

Apf)(s) = (II, (= D%s@O) X L o5 pBo0-r()Co.
PROPOSITION - DEFINITION 2.4. Soient [ une application de S dans

un groupe abélien A, m unentier, o unpointde S. Les deux conditions
suivantes sont équivalentes:

(i) Apf =0 pour toute partie P a m + 1 éléments de X;

(i) (Apf)(o) =0 pour toute partie P de X dont le cardinal est
strictement supérieur a m.

Si ces conditions sont vérifiées on dit que [ est de degré inférieur ou
égal a m.
On pose a nouveau €p(s) = erpsx(s). Soit f une application de S

dans A de degré inférieur ou égal a m. Compte tenu de (2.1), on peut écrire
2™ f sous la forme

2mf = ZPG.@S,”(X) EpCp,
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(cp)pe ».,,(x) désignant une famille d’éléments de A4 indexée par I’ensemble
P »(X) des parties de X dont le cardinal est inférieur ou égal a m. Si la
multiplication par 2 est injective dans A cette écriture est unique. Si de plus
A est un Z[%]—module alors toute application f de S dans A s’écrit de fagon
unique sous la forme

f = Zpe 7o) EPCP -

Dans ces coordonnées (les coordonnées €,) on a
*) — — NPl
f(s%) = ZPE_;}(X)SP(S)( '*lep,

s* désignant 1’élément de S défini par s*(x) = (s(x))* (involution dans
S, s s*, correspond dans ./~ & 'image dans un miroir) et | P | désignant le
cardinal de P.

DIFFERENCES SUCCESSIVES ET NOEUDS SINGULIERS

A cause de la formule (1.1) il peut &tre avantageux de substituer dans le
formalisme précédent a ’endomorphisme A, de A% I’endomorphisme D,
défini par (D, f)(s) = — €,(s) (A, f)(s). On observera que D, et D,
commutent pour tous x et y dans X et que D, est de carré nul. On note
encore Dp le composé des D, , x parcourant une partie P de X; Dp et Ap sont
reliés par la formule (Dp f) (s) = (= 1)!Plep(s) (Ap f) (5).

Soit v, p le nceud singulier obtenu en remplagant dans la définition de @,
la fonction 6, par une fonction 6, p vérifiant 8, p(s(x)) = 0, p((s(x))*) pour
tout x dans P et 0, p(s(x)) > 0, »((s(x))*) pour tout x dans X — P; la
formule (1.1) donne:

PROPOSITION 2.5. Soit f:.V = A un invariant des nceuds. En notant
encore f:S—> A [Dapplication s~ f(ps), on a:

FWsp) = (Dpf)(s) = (= DIPlep(s) (Ap ) (s) .

Cette proposition montre que la définition 2.4 est bien en accord avec la
définition 1.3: une application de S dans A4 induite par un invariant de Vassiliev
de degré inférieur ou égal a m est elle aussi de degré inférieur ou égal a m.

ENLACEMENT DES POINTS DOUBLES DE «

Soit P = {x, y} une partie a deux éléments de X on pose e(P) = 1 ou 0
suivant que x et y sont enlacés (rappelons que ceci signifie que les 0-sphéres
o~ '(x) et a~'(y) sont enlacés dans S!) ou non; e({x,y}) sera également

noté e(x, y). Dans le langage de [Ba], a ~!(P) est un diagramme a 2 cordes
et on a avec le symbolisme de cet article:

e()=1 , e(GD):o
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