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296 J. LANNES

1. Invariants de Vassiliev de degré fini
(d'après Vassiliev, Birman et Lin, Bar-Natan)

Dans ce paragraphe nous résumons très brièvement cette théorie et nous
en extrayons l'énoncé élémentaire 1.5 qui sera utilisé au paragraphe 4.

Nous appelons invariant des noeuds une application /: A, définie sur
l'ensemble JV des classes d'isotopie de plongements de S1 dans R3 et à

valeurs dans un groupe abélien A, telle que l'image du nœud trivial soit nulle.
Nous appelons nœud singulier une immersion \i/: S1 —^ R3 vérifiant les

propriétés suivantes (voir figures 3, 4, 5 et 6):

— \j/ admet comme seules «singularités» des points doubles en nombre fini;
— en un point double les deux tangentes à ij/OS1) sont distinctes.

On «désingularise» \j/ en écartant en chaque point double les deux

brins de M/OS1); à isotopie près on obtient ainsi 2m plongements

cpiS^R3, m désignant le nombre de points doubles de m/. Soit x un
de ces points doubles, on définit s*((p) ± 1 de la façon suivante.
On pose y ~1 (x) {£, £*} et on prend pour signe de sx(cp) celui du

déterminant dét(\j/'(4)» V'(£*)> <P© ~ <P(£*)) (°n identifie ici S1 avec R/Z
et m/ avec une application Z-périodique de R dans R3, \j/' désigne alors la
dérivée de \j/).

On étend l'invariant / aux nœuds singuliers en posant:

(i-i) /(v) ^ •

Cette extension satisfait la formule de récurrence symbolique:

f<X r(X)"^X» •

Exemples
On considère les nœuds singuliers des figures 3, 4, 5 et 6. On note T le

nœud de trèfle, H le nœud de huit (figures 1 et 2), et K* l'image dans un miroir
d'un nœud K (le nœud obtenu à partir de K par composition au but avec un
difféomorphisme de R3 renversant l'orientation). On obtient:

- f(K1) f(T);

- f(K2) f{T)~ f{T*)-

- f(K3) f(T) + f(H);
— f(K4) f(T) + /(T*) + f(H) + f(H*) ou encore puisque H et H*
coïncident f(K4) f(T) + f(T*) + 2/(//).
On observe que l'on a:
(1.2) f(K4) 2f(K3)- f{K2).
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Définition 1.3. Soit m un entier, on dit qu'un invariant f: JA A

est (un invariant de Vassiliev) de degré inférieur ou égal à m si f (v|/) est

nul pour tout nœud singulier \j/ dont le nombre de points doubles est

strictement supérieur à m. (On dit qu'il est de degré m s'il est de degré

inférieur ou égal à m sans être de degré inférieur ou égal à m - 1.)

Fonctions de poids

Soit y un nœud singulier à m points doubles. L'ensemble des points
doubles à la source est un sous-ensemble de 2m points de S1, muni d'une

involution sans points fixes. Les classes d'isotopie de tels sous-ensembles sont

appelées des diagrammes à m cordes; l'ensemble (fini) des diagrammes
à m cordes est noté Soit f : J^ -> A un invariant de Vassiliev de degré

inférieur ou égal à m. On se convainc sans peine que /(\|/) ne dépend que du

diagramme à m cordes défini par \p. On associe de la sorte à l'invariant / une

application On vérifie que Wf satisfait deux systèmes de

relations linéaires. Le premier correspond à l'énoncé 1.4 ci-dessous; pour le

second, constitué des relations dites des 4 termes, voir par exemple [Ba] (dans
le cas m 3 ces relations sont conséquence de (1.2) et (1.4)). Les applications
de dans A vérifiant ces deux systèmes sont appelées des fonctions de

poids de degré m. La partie difficile de la théorie est de montrer que
l'application /i-> Wf est surjective (au moins pour A R, théorème de

Kontsevitch).
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Dans cette note nous traitons «élémentairement» le cas m ^ 3.

Nous dirons que deux points doubles (au but) x et y de y sont enlacés si

les 0-sphères M/_1W et \|/_10>) sont enlacés dans S1.

Proposition 1.4. Soient \p un nœud singulier à m points doubles
et f un invariant de Vassiliev de degré inférieur ou égal à m. S'il existe

un point double de \j/ qui n 'est enlacé avec aucun autre alors f(\y) est nul.

Pour une démonstration voir par exemple [Ba].
Soit maintenant \|/ un nœud singulier à 2 ou 3 points doubles. Quand \j/

a 2 points doubles nous posons W2(\v) 1 si ces deux points doubles sont
enlacés et 0 sinon. Quand y a 3 points doubles nous posons
W3(\\f) sup (N- 1,0), N désignant le nombre de paires de points doubles
enlacés.

La proposition 1.4 et les calculs d'invariants de nœuds singuliers que nous

avons donné ci-dessus comme exemples conduisent à l'énoncé suivant:

Proposition 1.5. (a) La valeur d'un invariant de Vassiliev f de degré

inférieur ou égal à 2 sur un nœud singulier \j/ à 2 points doubles est

donnée par
/(V) W2(y)f(T)

(b) La valeur d'un invariant de Vassiliev f de degré inférieur ou égal à 3

sur un nœud singulier \j/ à 3 points doubles est donnée par

/(xi/) W3(y) (f(T) + /(//))

2. Formalisme relatif aux nœuds de R3

AU-DESSUS D'UNE IMMERSION GÉNÉRIQUE DE S1 DANS R2

On reprend le formalisme de [La].
Soit a: S1 R2 une immersion générique. On note respectivement X et X

l'ensemble des points doubles de a à la source et au but. La restriction de

a:X^X est un revêtement (trivial) à deux feuillets dont l'ensemble des

sections est noté S. Quand nous serons amenés à faire varier a, nous

préciserons ces notations en ^(a), X(a), 5(a). L'ensemble 5 est un espace

affine sous l'ensemble &(X) des parties de X vu comme un Z/2-espace
vectoriel: la différence entre deux sections sets' est la partie {x; s(x) =£ s'(x)}.
Nous nous autorisons par la suite à identifier LP (X) avec {0, 1}* (alors que

l'on préférait considérer (Z/2)x dans [La]) ou avec le Z/2-espace vectoriel de
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