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296 J. LANNES

1. INVARIANTS DE VASSILIEV DE DEGRE FINI
(D’APRES VASSILIEV, BIRMAN ET LIN, BAR-NATAN)

Dans ce paragraphe nous résumons trés briévement cette théorie et nous
en extrayons I’énoncé élémentaire 1.5 qui sera utilisé au paragraphe 4.

Nous appelons invariant des nceuds une application f: .4 — A, définie sur
I’ensemble .4~ des classes d’isotopie de plongements de S! dans R3 et a
valeurs dans un groupe abélien A, telle que I’image du nceud trivial soit nulle.

Nous appelons noeud singulier une immersion y:S! — R3 vérifiant les
propriétés suivantes (voir figures 3, 4, 5 et 6):
— y admet comme seules «singularités» des points doubles en nombre fini;
— en un point double les deux tangentes a y(S!) sont distinctes.
On «désingularise» y en écartant en chaque point double les deux
brins de w(S!); a isotopie prés on obtient ainsi 27 plongements
¢:S'—> R?, m désignant le nombre de points doubles de y. Soit x un
de ces points doubles, on définit €,(p) = =1 de la fagon suivante.
On pose Yy~ !(x) ={&,E*} et on prend pour signe de g,(¢) celui du
déterminant dét(y’(€), w'(£%), 0 (&) — ¢ (£*)) (on identifie ici S! avec R/Z
et y avec une application Z-périodique de R dans R3, y’ désigne alors la
dérivée de ).

On étend P'invariant f aux nceuds singuliers en posant:

(1.1 fw) =X (Il 2@ /(@

Cette extension satisfait la formule de récurrence symbolique:

IO GEHOGER DS
EXEMPLES

On considére les nocuds singuliers des figures 3, 4, 5 et 6. On note T le
noeud de tréfle, H le noeud de huit (figures 1 et 2), et K* I’image dans un miroir
d’un nceud K (le nceud obtenu a partir de K par composition au but avec un
difféomorphisme de R3 renversant I’orientation). On obtient:

— Jf(&Ky) = f(T);

— f(K2) = f(T) — f(T7%);

— Jf(K3) = f(T) + f(H);

— f(Ky) = f(T) + f(T*) + f(H) + f(H*) ou encore puisque H et H*
coincident f(K,) = f(T) + f(T*) + 2f(H).

On observe que ’on a:

(1.2) FKy) =2f(K3) — f(K2) .
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DEFINITION 1.3. Soit m un entier, on dit qu’un invariant f: 4V — A
est (un invariant de Vassiliev) de degré inférieur ou égal a m si  f(y) est
nul pour tout nceud singulier y dont le nombre de points .doubles est
strictement supérieur @ m. (On dit qu’il est de degré m s’il est de degré
inférieur ou égal @ m sans étre de degré inférieur ou égal a m—1.)

FONCTIONS DE POIDS

Soit w un nceud singulier a m points doubles. L’ensemble des points
doubles @ la source est un sous-ensemble de 2m points de S!, muni d’une
involution sans points fixes. Les classes d’isotopie de tels sous-ensembles sont
appelées des diagrammes a m cordes; ’ensemble (fini) des diagrammes
a m cordes est noté &,,. Soit f: ./ — A un invariant de Vassiliev de degré
inférieur ou égal a m. On se convainc sans peine que f(y) ne dépend que du
diagramme a m cordes défini par y. On associe de la sorte a ’invariant f une
application W;: %,, > A. On vérifie que W, satisfait deux systémes de
relations linéaires. Le premier correspond a 1’énoncé 1.4 ci-dessous; pour le
second, constitué des relations dites des 4 termes, voir par exemple [Ba] (dans
le cas m = 3 ces relations sont cons€équence de (1.2) et (1.4)). Les applications
de ¢, dans A vérifiant ces deux systémes sont appelées des fonctions de
poids de degré m. La partie difficile de la théorie est de montrer que
I’application f+ W, est surjective (au moins pour A = R, théoréme de
Kontsevitch).
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Dans cette note nous traitons «élémentairement» le cas m < 3.
Nous dirons que deux points doubles (au but) x et y de v sont enlacés si
les O-spheéres y ~1(x) et y ~1(y) sont enlacés dans S!.

PROPOSITION 1.4. Soient y un nceud singulier @ m points doubles
et f wun invariant de Vassiliev de degré inférieur ou égal a m. S’il existe
un point double de  qui n’est enlacé avec aucun autre alors f(y) est nul.

Pour une démonstration voir par exemple [Ba].

Soit maintenant y un nceud singulier & 2 ou 3 points doubles. Quand vy
a 2 points doubles nous posons W,(y) = 1 si ces deux points doubles sont
enlacés et W,(y) = 0 sinon. Quand y a 3 points doubles nous posons
Wi(y) = sup(N — 1, 0), N désignant le nombre de paires de points doubles
enlacés.

La proposition 1.4 et les calculs d’invariants de nceuds singuliers que nous
avons donné ci-dessus comme exemples conduisent a 1’énoncé suivant:

PROPOSITION 1.5. (a) La valeur d’un invariant de Vassiliev [ de degré
inférieur ou égal a 2 sur un nceud singulier Y a 2 points doubles est
donnée par

S = Wa(w) fF(T) .

(b) La valeur d’un invariant de Vassiliev [ de degré inférieur ou égal a 3
sur un neeud singulier y a 3 points doubles est donnée par

fw) = wiw) (f(T) + f(H)) .

2. FORMALISME RELATIF AUX NCEUDS DE R3
AU-DESSUS D’UNE IMMERSION GENERIQUE DE S! DANS R?

On reprend le formalisme de [La].

Soit a: S! = R2 une immersion générique. On note respectivement XetX
I’ensemble des points doubles de o a la source et au but. La restriction de
o: X — X est un revétement (trivial) & deux feuillets dont I’ensemble des
sections est noté S. Quand nous serons amenés a faire varier o, nous
préciserons ces notations en X (a), X(a), S(a). L’ensemble S est un espace
affine sous 1’ensemble Z7(X) des parties de X vu comme un Z/2-espace
vectoriel: la différence entre deux sections s et s” est la partie {x; s(x) # s'(x)}.
Nous nous autorisons par la suite & identifier & (X) avec {0, 1}¥ (alors que
I’on préférait considérer (Z/2)* dans [La]) ou avec le Z/2-espace vectoriel de
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