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SUR LES INVARIANTS DE VASSILIEV
DE DEGRE INFERIEUR OU EGAL A 3

par Jean LANNES

0. INTRODUCTION

L’objet de cette note est de montrer que les invariants de Vassiliev de degré
inférieur ou égal a 3 d’un nceud de R3, donné par 'une de ses projections
génériques, s’expriment comme des sommes de termes indexés par les parties
a 2 et 3 éléments de I’ensemble des points de croisement.

Il s’agit d’une suite, suscitée par la lecture de I’article [Ba] de Bar-Natan,
de la note [La] ou ’on montrait que I’invariant de Kervaire d’un noeud
s’exprime comme une somme dans Z/2 de termes indexés par les paires de
points de croisement (I’invariant de Kervaire est I’'unique invariant de Vassiliev
a valeurs dans Z/2 de degré inférieur ou égal & 2, non nul, nul sur le nceud
trivial).

Le présent travail est trés élémentaire. Le paragraphe principal est le 4-ieéme
dont le contenu est essentiellement le suivant:

1) On observe que la partie formelle de la théorie des invariants de Vassiliev
(paragraphe 1) conduit aisément a leur expression en termes de points de
croisement si le degré est supposé inférieur ou égal a 3; les calculs sont menés
avec le formalisme du paragraphe 2.

2) On oublie le 1) (du moins on fait semblant!). On considére a priori ces
expressions et I’on vérifie qu’elles sont invariantes par les mouvements de

Reidemeister; les seuls ingrédients de cette vérification proviennent du
paragraphe 3.

Unités de Recherches Associées au CNRS D0169 et 212.
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1. INVARIANTS DE VASSILIEV DE DEGRE FINI
(D’APRES VASSILIEV, BIRMAN ET LIN, BAR-NATAN)

Dans ce paragraphe nous résumons trés briévement cette théorie et nous
en extrayons I’énoncé élémentaire 1.5 qui sera utilisé au paragraphe 4.

Nous appelons invariant des nceuds une application f: .4 — A, définie sur
I’ensemble .4~ des classes d’isotopie de plongements de S! dans R3 et a
valeurs dans un groupe abélien A, telle que I’image du nceud trivial soit nulle.

Nous appelons noeud singulier une immersion y:S! — R3 vérifiant les
propriétés suivantes (voir figures 3, 4, 5 et 6):
— y admet comme seules «singularités» des points doubles en nombre fini;
— en un point double les deux tangentes a y(S!) sont distinctes.
On «désingularise» y en écartant en chaque point double les deux
brins de w(S!); a isotopie prés on obtient ainsi 27 plongements
¢:S'—> R?, m désignant le nombre de points doubles de y. Soit x un
de ces points doubles, on définit €,(p) = =1 de la fagon suivante.
On pose Yy~ !(x) ={&,E*} et on prend pour signe de g,(¢) celui du
déterminant dét(y’(€), w'(£%), 0 (&) — ¢ (£*)) (on identifie ici S! avec R/Z
et y avec une application Z-périodique de R dans R3, y’ désigne alors la
dérivée de ).

On étend P'invariant f aux nceuds singuliers en posant:

(1.1 fw) =X (Il 2@ /(@

Cette extension satisfait la formule de récurrence symbolique:

IO GEHOGER DS
EXEMPLES

On considére les nocuds singuliers des figures 3, 4, 5 et 6. On note T le
noeud de tréfle, H le noeud de huit (figures 1 et 2), et K* I’image dans un miroir
d’un nceud K (le nceud obtenu a partir de K par composition au but avec un
difféomorphisme de R3 renversant I’orientation). On obtient:

— Jf(&Ky) = f(T);

— f(K2) = f(T) — f(T7%);

— Jf(K3) = f(T) + f(H);

— f(Ky) = f(T) + f(T*) + f(H) + f(H*) ou encore puisque H et H*
coincident f(K,) = f(T) + f(T*) + 2f(H).

On observe que ’on a:

(1.2) FKy) =2f(K3) — f(K2) .
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DEFINITION 1.3. Soit m un entier, on dit qu’un invariant f: 4V — A
est (un invariant de Vassiliev) de degré inférieur ou égal a m si  f(y) est
nul pour tout nceud singulier y dont le nombre de points .doubles est
strictement supérieur @ m. (On dit qu’il est de degré m s’il est de degré
inférieur ou égal @ m sans étre de degré inférieur ou égal a m—1.)

FONCTIONS DE POIDS

Soit w un nceud singulier a m points doubles. L’ensemble des points
doubles @ la source est un sous-ensemble de 2m points de S!, muni d’une
involution sans points fixes. Les classes d’isotopie de tels sous-ensembles sont
appelées des diagrammes a m cordes; ’ensemble (fini) des diagrammes
a m cordes est noté &,,. Soit f: ./ — A un invariant de Vassiliev de degré
inférieur ou égal a m. On se convainc sans peine que f(y) ne dépend que du
diagramme a m cordes défini par y. On associe de la sorte a ’invariant f une
application W;: %,, > A. On vérifie que W, satisfait deux systémes de
relations linéaires. Le premier correspond a 1’énoncé 1.4 ci-dessous; pour le
second, constitué des relations dites des 4 termes, voir par exemple [Ba] (dans
le cas m = 3 ces relations sont cons€équence de (1.2) et (1.4)). Les applications
de ¢, dans A vérifiant ces deux systémes sont appelées des fonctions de
poids de degré m. La partie difficile de la théorie est de montrer que
I’application f+ W, est surjective (au moins pour A = R, théoréme de
Kontsevitch).
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Dans cette note nous traitons «élémentairement» le cas m < 3.
Nous dirons que deux points doubles (au but) x et y de v sont enlacés si
les O-spheéres y ~1(x) et y ~1(y) sont enlacés dans S!.

PROPOSITION 1.4. Soient y un nceud singulier @ m points doubles
et f wun invariant de Vassiliev de degré inférieur ou égal a m. S’il existe
un point double de  qui n’est enlacé avec aucun autre alors f(y) est nul.

Pour une démonstration voir par exemple [Ba].

Soit maintenant y un nceud singulier & 2 ou 3 points doubles. Quand vy
a 2 points doubles nous posons W,(y) = 1 si ces deux points doubles sont
enlacés et W,(y) = 0 sinon. Quand y a 3 points doubles nous posons
Wi(y) = sup(N — 1, 0), N désignant le nombre de paires de points doubles
enlacés.

La proposition 1.4 et les calculs d’invariants de nceuds singuliers que nous
avons donné ci-dessus comme exemples conduisent a 1’énoncé suivant:

PROPOSITION 1.5. (a) La valeur d’un invariant de Vassiliev [ de degré
inférieur ou égal a 2 sur un nceud singulier Y a 2 points doubles est
donnée par

S = Wa(w) fF(T) .

(b) La valeur d’un invariant de Vassiliev [ de degré inférieur ou égal a 3
sur un neeud singulier y a 3 points doubles est donnée par

fw) = wiw) (f(T) + f(H)) .

2. FORMALISME RELATIF AUX NCEUDS DE R3
AU-DESSUS D’UNE IMMERSION GENERIQUE DE S! DANS R?

On reprend le formalisme de [La].

Soit a: S! = R2 une immersion générique. On note respectivement XetX
I’ensemble des points doubles de o a la source et au but. La restriction de
o: X — X est un revétement (trivial) & deux feuillets dont I’ensemble des
sections est noté S. Quand nous serons amenés a faire varier o, nous
préciserons ces notations en X (a), X(a), S(a). L’ensemble S est un espace
affine sous 1’ensemble Z7(X) des parties de X vu comme un Z/2-espace
vectoriel: la différence entre deux sections s et s” est la partie {x; s(x) # s'(x)}.
Nous nous autorisons par la suite & identifier & (X) avec {0, 1}¥ (alors que
I’on préférait considérer (Z/2)* dans [La]) ou avec le Z/2-espace vectoriel de
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base X. On note enfin & — £* P’involution de X associée au revétement
XX

Un diagramme de ncoeud n’est rien d’autre que la donnée (a;s) d’une
immersion générique o de S! dans R? et d’un élément s de S(a). Précisons.
A une section s on fait correspondre un «nceud au-dessus de a» de la fagcon
suivante. Soit 8,: S! = R une fonction vérifiant 0,(s(x)) > 0,((s(x))*) pour
tout x dans X; I’application ¢, = o X 0,: S = R3 est un plongement dont la
classe d’isotopie est indépendante du choix de 6,.

SECTIONS DESCENDANTES

- Soit @ un point de S — X , on définit une section, notée s,, du revétement
X — X de la facon suivante. On munit S! — {@} de la relation d’ordre induite
par un difféomorphisme orienté de S! - {a} sur R et on pose
S.(x) = infa~!(x). Il est clair que s, ne dépend que de la composante
connexe de a dans S! — X. Nous appelons ce type de sections des sections
descendantes. Le tracé des nocuds correspondants explique cette terminologie;
ces nceuds sont triviaux.

RELATION D’ORDRE SUR X INDUITE PAR LE CHOIX D’UN POINT ¢ DE S! — X

Un point a de S! — X étant fixé, on munit X de la relation d’ordre image
réciproque de celle de S' — {a} par la section descendante s,. On a donc
X <y, x et y désignant deux points de X, si infa ~!(x) < infa “1(»).

COORDONNEES SUR S

Soient o un point de S et x un point de X. Nous notons d,,x:8—{0,1}
I’application s = (s — 0) (x).

Nous notons &,:S — {+ 1} Papplication s+ dét(a’(s(x)), a’((s(x))*))
(on identifie a avec une application Z-périodique de R dans R?). Cette

notation est en accord avec le premier paragraphe: si ’on considére Qs
comme une désingularisation dans R* de a on a bien &,(s) = ¢, (®s).

Les applications (8,,x)xcx €t (€¢)yex doivent &tre vues comme des
coordonnées sur S. Elles sont liées par la relation

(2.1) €x(8) = (= )% xO g (0) = (1 — 28, ,(5)) e, (0) .

«CALCULUS» DANS A4S

Un invariant des nceuds & valeurs dans 4 induit une application de S
dans A. Aussi aurons-nous besoin d’un peu de «calculus» dans A45.
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Soit f une application de S dans un groupe abélien A. Soit x un point
de X, on pose (A, f)(s) = f(s+x) — f(s). Soit P une partie de X, on
note Ap l’endomorphisme de A4S composé des endomorphismes A,
x parcourant P. La proposition ci-dessous (dont la vérification est laissée au
lecteur) est un genre de formule de Taylor.

Soit u# une application X — {0, 1}; on note encore u [’application
Z(X) — {0, 1} définie par u(P) = erP u(x).

PROPOSITION 2.2. Soit f wune application de S dans un groupe
abélien A. Pour tout s dans S et tout u dans {0,1}X on a:

f+uwy =3, . tP)Brf)(s) .

Comme a l’ordinaire cet énoncé admet la variante ci-aprés. On pose

60,1)(5) = erP 6o,x(S)'

PROPOSITION 2.3. Soit [ wune application de S dans un groupe
abélien A. Pour tout s et tout o dans S on a:

F6) =T o i B0.p(8) (A £) (0) .

Réciproquement soient (cp)pec #x) une famille d’éléments de A
indexée par Z(X) et f l’application de S dans A définie par f(s)
= ZPE Py O, p(8)cp. On vérifie alors que 'on a (Ap f)(0) = cp ce qui
montre que toute application de S dans A4 s’écrit de facon unique sous la forme

EPG ) So.pCp. On Vérifie que 'on a plus généralement

Apf)(s) = (II, (= D%s@O) X L o5 pBo0-r()Co.
PROPOSITION - DEFINITION 2.4. Soient [ une application de S dans

un groupe abélien A, m unentier, o unpointde S. Les deux conditions
suivantes sont équivalentes:

(i) Apf =0 pour toute partie P a m + 1 éléments de X;

(i) (Apf)(o) =0 pour toute partie P de X dont le cardinal est
strictement supérieur a m.

Si ces conditions sont vérifiées on dit que [ est de degré inférieur ou
égal a m.
On pose a nouveau €p(s) = erpsx(s). Soit f une application de S

dans A de degré inférieur ou égal a m. Compte tenu de (2.1), on peut écrire
2™ f sous la forme

2mf = ZPG.@S,”(X) EpCp,
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(cp)pe ».,,(x) désignant une famille d’éléments de A4 indexée par I’ensemble
P »(X) des parties de X dont le cardinal est inférieur ou égal a m. Si la
multiplication par 2 est injective dans A cette écriture est unique. Si de plus
A est un Z[%]—module alors toute application f de S dans A s’écrit de fagon
unique sous la forme

f = Zpe 7o) EPCP -

Dans ces coordonnées (les coordonnées €,) on a
*) — — NPl
f(s%) = ZPE_;}(X)SP(S)( '*lep,

s* désignant 1’élément de S défini par s*(x) = (s(x))* (involution dans
S, s s*, correspond dans ./~ & 'image dans un miroir) et | P | désignant le
cardinal de P.

DIFFERENCES SUCCESSIVES ET NOEUDS SINGULIERS

A cause de la formule (1.1) il peut &tre avantageux de substituer dans le
formalisme précédent a ’endomorphisme A, de A% I’endomorphisme D,
défini par (D, f)(s) = — €,(s) (A, f)(s). On observera que D, et D,
commutent pour tous x et y dans X et que D, est de carré nul. On note
encore Dp le composé des D, , x parcourant une partie P de X; Dp et Ap sont
reliés par la formule (Dp f) (s) = (= 1)!Plep(s) (Ap f) (5).

Soit v, p le nceud singulier obtenu en remplagant dans la définition de @,
la fonction 6, par une fonction 6, p vérifiant 8, p(s(x)) = 0, p((s(x))*) pour
tout x dans P et 0, p(s(x)) > 0, »((s(x))*) pour tout x dans X — P; la
formule (1.1) donne:

PROPOSITION 2.5. Soit f:.V = A un invariant des nceuds. En notant
encore f:S—> A [Dapplication s~ f(ps), on a:

FWsp) = (Dpf)(s) = (= DIPlep(s) (Ap ) (s) .

Cette proposition montre que la définition 2.4 est bien en accord avec la
définition 1.3: une application de S dans A4 induite par un invariant de Vassiliev
de degré inférieur ou égal a m est elle aussi de degré inférieur ou égal a m.

ENLACEMENT DES POINTS DOUBLES DE «

Soit P = {x, y} une partie a deux éléments de X on pose e(P) = 1 ou 0
suivant que x et y sont enlacés (rappelons que ceci signifie que les 0-sphéres
o~ '(x) et a~'(y) sont enlacés dans S!) ou non; e({x,y}) sera également

noté e(x, y). Dans le langage de [Ba], a ~!(P) est un diagramme a 2 cordes
et on a avec le symbolisme de cet article:

e()=1 , e(GD):o
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3. RELATIONS D’INTERSECTION

On utilise les notations du paragraphe précédent. On fixe une «ori-
gine» a dans S! — X ; on rappelle que le choix de a¢ détermine une relation
d’ordre total sur S! — {a} et sur X. On décrit dans ce paragraphe certaines
relations entre les entiers e(x, y) et €,(s,) qui joueront un rdle crucial dans
le prochain paragraphe.

3.1. Soit x un point de X. Soit D un petit disque fermé de R? de centre x;
on note I, et I, les deux composantes connexes de S! — o~ 1(D —9dD). Le
point a se trouve a l’intérieur de I'une de ces composantes, disons /;. On
considére maintenant S! plongé de fagon standard dans R? et on note
C;,i=1,2, la réunion de I; et du segment J; joignant les deux extrémités
de I; (voir figure 7). On note encore a: C; — R? le prolongement affine
de a;; on observe que a(J;) et a(J;) ne se rencontrent pas. La 0-chaine

))

représente dans Hy(R?; Z) ’intersection des deux cercles «immergés» a.(C;)
et a(C;); on a donc la relation suivante:

e(x:y)gy(sa)y— Z e(x,y)sy(sa)y

yeX,y<x yeX,y>x

(31) E E(X, _)7) €y (Sa) = Z e(x: y) €y (Sa) .

yeX,y<x yeX,y>x

3.2. Soient maintenant x et y deux points de X avec e(x, y) = 0et x < y. On
pose o~ 1(x) = {§, E*} et a ~1(py) = {n,n*}avec { < £€* et 1 < n*. On a dans
St — {a} deux configurations possibles:

) E<n<n*<Er

2) &< &*<n<n*.

Premier cas (figure 8).

En considérant I’intersection de a(C;) et a.(C,) on obtient:

e(x, z)e(y, 2) e, (s0) = ), e(x, 2) e(y, 2) €, (s,) -

ZzeX,z<x zeX,z2>)

On observe également que pour x < z < y on a e(x, z)e(y,z) = 0.

Deuxieme cas (figure 9).

En considérant I’intersection de a(C;) et a(C,) on obtient cette fois:

e(x,z)e(y,2)e.(s,) =0

ZzeX,x<z<y

et I’on observe que pour z< xou z>yon ae(x,z)e(y,z) =0.
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Supposons encore x < y mais ne supposons plus e(x, y) = 0, il résulte de ce
qui précéde que ’on a dans tous les cas les relations suivantes:

Yk oee (I—en ) elx 2) e(y, 2) €2 (s0)
=Y. .y, A —eny) el 2)e(r, 2)&:(50) ;
322 X, ..., U-exy)exz)er z)e(s) =0.

(3.2.1)

£ "
= (A A p—
E < 5 |~ a : La
C?/ ' Ci a . \\ J *
: I i N
:. ~ Lo W
* 3
£ Tof
FIGURE 7 FIGURE 8 FIGURE 9

4. EXPRESSION DES INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR
OU EGAL A 3 EN TERMES DE POINTS DE CROISEMENT

Soient f: .7 — A un invariant des nceuds et o une immersion générique
de S! dans R2. On note encore abusivement f:S = S(a) > 4 P'application
induite par I’invariant /. On continue a utiliser les notations du paragraphe 2.

4.1. INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR OU EGAL A 1

PROPOSITION 4.1. Tout invariant de Vassiliev de degré inférieur ou égal

a 1 est nul. (Rappelons que nous supposons qu’un invariant est nul sur le nceud
trivial.)

Démonstration. Soient f: ./ — A un invariant de Vassiliev de degré infé-
rieur ou €gal a 1 et a une immersion générique de S! dans R2. On fixe une
origine @ dans S! — X. L’application f:S = S(0) > A, qui est de degré
inférieur ou égal a 1, est de la forme:

fG)=cg+ X _ 8s,:()cy

(notations du paragraphe 2). Le coefficient ¢, = f(s,) est nul; on montre
qu’il en est de méme pour les coefficients ¢, de la fagon suivante. Soient s,
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et s, les sections descendantes correspondant aux composantes connexes de
S! — X adjacentes a un point & de X, on a:

— S — 51 = 0(f);
— f(s2) — f(s1) = £ caey;
— f(s1)=0 et f(s2)=0.

COMMENTAIRES

On peut voir directement 4.1 comme un corollaire de 1.4 et la démonstra-
tion ci-dessus peut sembler bien compliquée. En fait le sous-paragraphe 4.1
n’est 1a que pour assurer la cohérence idéologique du paragraphe 4.

4.2. INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR OU EGAL A 2

Soient f: .# — A un invariant de Vassiliev de degré inférieur ou égal a 2
et o une immersion générique de S!' dans R?. On considére a nouveau 1’appli-
cation f:S = S(a) > A, de degré inférieur ou égal a 2, induite par
Pinvariant f.

On fixe une origine ¢ dans S' — X. Soit P = {x, y} une partie a
2 ¢léments de X avec x < y (pour la relation d’ordre sur X définie par a), on
pose:

(4.2.1) Mo, p(5) = — 85y, 5 (5) (1 = 85, ,(5)) £2(50) € (52) -
Compte tenu de (2.1), A, p(s) peut €tre également défini par:
(4.2.2) 4200, p () = (ex(5) — £x(52)) (&, (5) + £,(s,)) .

On note enfin %%,(X) l’ensemble des parties a 2 éléments de X. La
proposition ci-dessous généralise pour tout groupe abélien A la premiére
formule du théoréme 4 de [La] qui correspond au cas A = Z/2:

PROPOSITION 4.2.3. L’application f:S — A est donnée par la formule

£ = (T, 5 €P) ha, () £(T) .

Démonstration. La proposition 1.5 (a) et la proposition 2.5 donnent:

PROPOSITION 4.2.4. Pour tout P dans 2,(X) et tout s dans S
on a

(Apf)(s) = e(P)ep(s) f(T) .
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A partir de 13, la démonstration de la proposition 4.2.3 est essentiellement
la méme que celle de [La]. D’apres 2.3 on a

F(8) = f(sa) + X 85,.2(8) (A f) (Sa)
+ Y iy 850 P () (Ap ) (52)
ou encore, puisque f(s,) est r;ul et (Apf)(s,) égal & e(P)ep(s,) f(T),
fG) = X1, 85,9 (sa+2)
+ L pe 2,0 Osa P(8) P 8p(s0) F(T) -

Tout se raméne donc au calcul de f(s, + 2). )
Soient z_ et z, les composantes connexes de S1 — X respectivement
adjacentes a gauche et & droite a infa ~!(z). On vérifie:

4.2.5)

e(r,z) sir<z
(4.2.6) (5;_ —Sa)(r)e(r,z) = { .
0 Sir>2z;

Avec (4.2.5) ces deux formules impliquent la suivante:

Flso) = fs:) = fGa+2) + X, . e(r2)e(s)e(s0) f(T) .
Compte tenu de f(s, ) = 0 et f(s;,) = 0, il vient

f(Sa +2z)= — EreX’r<ze(r’z)gr(sa)gz(sa)f(T) .

D’ou le résultat.
Voici maintenant la version «entiére» du paragraphe 5 de [La].

On oublie qu’il existe des invariants de Vassiliev de degré 2 a valeurs dans Z
s . .

et on considére a priori ’expression ZPE 2, e(P) g, p(5).

PROPOSITION 4.2.6. La somme

Yoo 5 € P ha p(s)  est inde-
pendante du choix de a.

Démonstration. Soient 1 le plus petit élément de X pour la relation
d’ordre induite par celle de S! — {a} et b un point dans la composante
connexe de S! — X adjacente a droite a 1; il faut montrer:

Yremion P har® =YL, , Py (s).

On pose i = a(1); on a donc 1= s,(i) et i =infX (pour la relation
d’ordre sur X définie par a). Soit P une partie a 2 éléments de X. Si i¢ P
alors Ay p(s) = Ag,p(s). Si ie P et si e(P)=1 alors Xy p(s) — Ay p(5)
= 8,,,i(s) ep(s,). On a par conséquent
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Lresmo €@ hor(®) = L, o0 e(P) ke p(s)
= 85,,i(5) & (s,) erx— 0 e(i, x) €,(s,) .
Or cette derniére somme est nulle d’aprés (3.1).

On pose:

(4.2.7) Va(s) = X, 2,00 €P) Ao, p(5) -

THEOREME 4.2.8. L’entier V,(s) est un invariant de la classe d’iso-
topie du nceud o, .

Démonstration. On vient d’assigner a tout diagramme de noeud (o ; s) un
entier V,(a;s) = V,(s). Il s’agit de vérifier que V, (a; s) est invariant par les
trois mouvements de Reidemeister.

L’invariance par le mouvement I (figure 10) est immédiate: un point double

qui n’est enlacé avec aucun autre n’intervient pas au second membre
de (4.2.7).

FIGURE 10

La vérification de I’invariance par les mouvements II et III (figures 11
et 12) est aisée parce que dans la formule (4.2.7) on a le choix de I’origine a.

On considere les figures 11 et 12; dans les deux cas la projection du
mouvement de Reidemeister donne une isotopie réguliere entre o et une
immersion générique de S! dans R? que ’on note B.

-
¥ \
— g
ot X Bla) N
o B (CX;/J) (B)'/D)

FiGure 11
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PN/ \/ —

5 MVE \/

() - 5 , / T \
‘ /N

O( B (O()'/f)) (B)b)

FIGURE 12

Dans le cas II les ensembles X (B) et X (B) s’identifient respectivement
a X(o) — {x, y} et X(0) — a-'({x, »}); S(B) s’identifie donc & un sous-
ensemble de S(a).

Dans le cas III on peut identifier X PB) a X (o) et X(B) a X (o) «en suivant
les points doubles par continuité»; S(B) s’identifie donc a S(a).

Dans les deux cas ’égalité V,(a;s) = V,(B;s) résulte de ce que A, p(s)
est nul si x ou y appartient a P, pour le choix indiqué de a.

On note encore V,: .4 — Z Dinvariant des nceuds qui vient d’&tre
défini. I1 est clair qu’il s’agit d’un invariant de Vassiliev de degré 2. La
proposition 4.2.3, ou plus directement les propositions 4.1 et 4.2.4 et le fait
que V,(T) vaut 1, impliquent:

PROPOSITION 4.2.9. Soit f: .V — A un invariant de Vassiliev d’ordre
inférieur ou égal a 2. Alors:

FK) = VLK) f(T) .

COMMENTAIRES

Soit Ck(7) le polyndme de Conway d’un nceud K [Co]; Ck(#) est un
polyndme pair a coefficients entiers:

Cx(t) =14+, (K)t?+ cu(K)t* + ... .

Bar-Natan a montré (voir par exemple [Ba]) que le coefficient c,, est un
invariant de Vassiliev de degré inférieur ou égal a 2n. La proposition 4.2.9
montre que les invariants c, et ¥V, coincident (Cr(¢) = 1 + #2).

La theorie que nous avons faite de I’invariant ¥V, est & comparer a celle
du chapitre III de [Ka].
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VARIANTES DE L’EXPRESSION DE V,

Si dans la démonstration de 4.2.3 on remplace infa ~!(z) par supo ~!(z)
on obtient:

F©) = (X, 5 o €PIXE () F(T)
avec A} p(8) = — (1 =38, 4(5)) 84, ,(5) €x(S,) €y (5,), C’est-a-dire A} ()
= Ay, p(5%). On a donc aussi
(4.2.10) Vo (s) = EPE%(X)e(P) AE p(s) .
L’égalité
Y € P hap() =T, ) e(P)ME ()
est en fait équivalente a (3.1). On a en effet
Y pe i €P) Oap(9) = 22 () = X 84, <(9)

avec

cx = €x(50) (X e(X, »)&,(s4) — X

Le fait que V, puisse s’exprimer a la fois par les formules (4.2.7) et (4.2.10)
a une explication plus conceptuelle. Cela traduit deux propriétés de cet

e(x, ¥) €,(s4)) -

yeX,y<x yeX,y>x

invariant:
— V2 (K*) = V,(K) (nous dirons que ’invariant V, est pair);

— V, (k ) =V, (K), K désignant le nceud obtenu a partir de K par compo-
sition & la source avec un difféomorphisme de S! renversant ’orientation.

Ces égalités sont conséquence de la théorie du paragraphe 1: les invariants
K Vy(K) — Vy(K*) et K= V(K) -V, (K ) sont triviaux parce que ce
sont des invariants de Vassiliev de degré inférieur ou égal a 1.

Compte tenu de (2.1) ou (4.2.2), on a

2(Ag, p(s) + A} p(5)) = €p(5) — €p(Sa) ,
si bien que I’invariant ¥, est encore donné par
(4.2.11) 4V2() = Lpe 5, ) €P) (Ep(s) — Ep(50))

ce qui en posant E(s) = ) #, 0 € P) Ep(s) s'écrit

4.2.12) 4V,(s) = E(s) — E(s,) -

Expliquons pourquoi une telle expression était prévisible. Considérons
I’application f:S — Z induite par un invariant de Vassiliev de degré 2, a
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valeurs dans Z, dont la fonction de poids est W, (voir proposition 1.5 (a)).
D’aprés ce que nous avons dit au paragraphe 2 il existe des entiers ¢y, X
parcourant X, et c tels que 'on a

4f()=E@) + L, Cxex(8) + ¢y .

Comme nous avons vu ci-dessus que f doit &tre paire (f(s) = f(s*)) les c,
sont nuls; comme f(s,) doit &tre nul ¢y vaut — E(s,).

Voici pour terminer une application amusante de (4.2.11):

PROPOSITION 4.2.13. Soit o une immersion générique de S' dans
R2. Soit o le point de S(a) défini par €,(w) =1 pour tout x
dans X(a). Alors les conditions suivantes sont équivalentes:

(i) o possede deux points doubles enlacés;
i) V2(0e) > 05

(iii) il existe un noeud au-dessus de o qui est non trivial.

Démonstration de I’implication (i) = (ii). Pour tout P dans Z%,(X) et
tout @ dans S! — X le terme €p (w) — ep(s,) qui apparait dans ’expression
(4.2.11) de V,(¢,) vaut 0 ou 2. Il faut donc montrer que (i) implique en fait
qu’il existe P et a avec e(P) = 1 et ep(s,) = — 1. Soient x et y deux points
doubles enlacés de . Choisissons a dans S' — X de facon & ce que x soit
le plus petit des points doubles pour I’ordre induit sur X; la relation (3.1)
devient ZzeX_{x} e(x,z)e.(s,) = 0. Il existe donc y’ dans X — {x} avec
e(x,y’) =1 et €,(5,) + €y:(5,) = 0. Ou €,(5,) €,(5,) ou €,(s,) €, (s,) est
égal a — 1.

Démonstration de ’implication (iii) = (i). Si e(P) = 0 pour tout P dans
#,(X) alors tout diagramme de noeud au-dessus de a peut étre ramené au
diagramme trivial par une succession de mouvements de Reidemeister de
type I.

4.3. INVARIANTS DE VASSILIEV DE DEGRE INFERIEUR OU EGAL A 3

HEURISTIQUE

Soit f:.7"—Z un invariant de Vassiliev de degré 3 dont la fonction
de poids est W, (voir proposition 1.5 (b)). Comme Iinvariant
K= f(K) + f(K*) est de degré inférieur ou égal a 2, on a d’apres 4.2.9

FEK) + f(K*) = (f/(T) + f(TH) V2(K) ,
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ou encore
FK) + f(K*) = = 2 f(H) V,(K)

(Iégalité f(K4) = f(T) + f(T*) + 2 f(H) du paragraphe 1 montre que
Pona f(T) + f(T*) = — 2 f(H) pour f de degré inférieur ou égal a 3); il
en résulte que I’invariant f + f(H) V, est impair (change de signe quand on
remplace K par K*). On peut donc supposer sans perdre de généralité
que f est impair ce que nous ferons ci-dessous.

Soit a une immersion générique de S! dans R2. On considére toujours
Papplication f:S = S(a) = Z induite par ’invariant f; elle est de degré
inférieur ou égal a 3 et impaire (f(s*) = — f()).

Soit P ={x,y,z} une partie a 3 ¢éléments de X. On pose
w(P) = sup(N -1, 0), N désignant le nombre de paires, contenues dans P,
de points enlacés. En d’autres termes on pose:

w(P)=e(x,y)e(x,z) +e(y,x)e(y,z) +e(z,x)e(z, )
—e(x,y)e(x,z)e(y, 2);

w({x, y, z}) sera également noté w(x, y, z). Dans le langage de [Ba], o~ ! (P)
est un diagramme a 3 cordes; on a avec le symbolisme de cet article:

..............

et w est nul sur les trois autres éléments de ;.
On pose enfin

W(S) = ZPG P35 (X) W(P) 8P(’S) ’
Z5(X) désignant le nombre de parties a 3 éléments de X.

Comme précédemment 8 f s’écrit
87 (s) = W(s) + EQE%(X) Coeo(s) + erchax(S) + ¢y,
et puisque f est impaire les coefficients cq et ¢y sont nuls:
8f(s) = W(s) + X __, CcxEel(s).

On détermine les coefficients ¢, de la facon suivante. On fixe une origine a
dans S! — X. On considére comme au paragraphe précédent les composantes
connexes x_ et x, de S! — X respectivement adjacentes a gauche et a droite
a infa ~1(x). Compte tenu de f(s, ) = 0 et f(s,, ) =0, il vient

(431) Cx = (W(Sx+) - W(Sx_))/zgx(Sx_) ;

il est clair que ce quotient est entier.
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Remarque. Posons s_ =S, ,5, = Sy, €t introduisons également les
sections descendantes s, et s” correspondant aux composantes connexes de
Sl — X respectivement adJacentes a gauche et & droite a supa ~!'(x). On
obtient pareillement

= (W(sl) — W(s'))/2e.(s") = — (W(s}) — W(s'))/2&x(s_) .
On doit donc avoir
Wi(s,)— W(s_)+ W(sl) - W(sl)=0.

En fait cette relation est conséquence de (3.2.1) et (3.2.2).
L’explicitation de (4.3.1) donne

4.3.2) 875) = ¥ o i W (P) a2 (5)
en posant
ua,{x,y,z}(s) = 8X(S) €y (S) €z (S) — &x (S) €y (Sx_) €z (Sx_)
- 8x(Sy_) 8y(S) 8z(Sy_) - Sx(Sz_) €y (Sz_) SZ(S) d

A Taide de (4.2.6) et des relations d’intersection du paragraphe 3 I’expression
(4.3.2) se transforme en

(4.3.3) 8S() = L oo iy WP Varr(s)

le terme v, p(s) étant défini de la fagon suivante. On écrit P = {x, y, 2} avec
x < y < z (toujours pour la relation d’ordre sur X définie par @) et on pose

Vo, p(8) = €x(8) €,(8) €:(5) — £x(5) &, (Sq) €-(S,)

+ 8x(Sa) gy (S) €; (Sa) — Ex (Sa) 8y (Sa) €z (S) .

(4.3.4)

On a encore:

Va,P(S) = 4(8x(S) 7"ar,{y,z}(s) — &y (S) Ka,{x,z}(s)
+ & (S) )\'a,{x,y}(s)) .

(4.3.5)

THEORIE «AB INITIO» DE L’INVARIANT V;

On oublie maintenant I’heuristique précédente (voild pourquoi nous °

n’avons pas détaillé le passage de (4.3.2) a (4.3.3)) et on considére a priori le
second membre de (4.3.3).

PROPOSITIQN 4.3.6. La somme EPE 200 WP) Vo, p () est indépen-
dante du choix de a.
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Démonstration. On reprend les notations de la démonstration de la
proposition 4.2.6. Il faut montrer:

LipepooWPIWVer() =Y, , WP Vs p(s) .

Soit P une partie a 3 éléments de X. Si i n’appartient pas a P alors v, p(s)
et vy, p(s) coincident. On suppose maintenant que i appartient a P. On
suppose tout d’abord que w(P) est non nul. On écrit P = {i, x,/j} avec
| < x < j pour ’ordre sur X défini par a. Pour ’ordre défini par b, on a:
x<j<ioux<i<j,suivant que i et j sont enlacés ou non. Dans le premier
cas v, p(s) et v, p(s) coincident a nouveau; dans le second on a

Vo, p(S) = Vo, p(s) = 2(ei(5) &;(52) + €i(S4) € (5)) €x(Sa) -
Il en résulte dans les deux cas:
W(P) (Vy, p(5) — Va4, p(5))
= 2(e1(5) & (sa) + €i(52) £,(5)) (1 — e(i, ) e(d, X) e(J, x) &4 (s4) -

On observe ensuite que cette relation est encore vérifiée si w(P) est nul. On
conclut alors a I’aide de la relation d’intersection (3.2.2).

On pose (provisoirement, la notation définitive sera canonisée aprés 4.3.8):
£6)= Lol o WP Vap(5) -

THEOREME 4.3.7. L’entier g(s) est un invariant de la classe d’isotopie
du neeud ©¢;.

Démonstration. On reprend les notations de la démonstration du
théoreme 4.2 8. La raison de I’invariance par le mouvement I est identique.
Pour vérifier ’invariance par les mouvements II et III on choisit 1’origine a
de la méme facon et on utilise 'expression (4.3.5) du terme v, p(s).

Invariance par le mouvement II (figure 11).

On a
ga;s) —g@B;s)
=4 T ey WEXTU Q) ac(s)) + WHPHU ) &,(50)) ha,0(S) -
et ’on conclut en observant que ’on a:
— w({xtuvQ)=w{ytv Q);
—  &x(S0) + &,(s,) = 0.

Invariance par le mouvement III (figure 12).

En accord avec les identifications dont nous avons convenues, nous posons
X = X(a) = X(B). Les applications de X(a) X S(a) et X(B) X S(B) dans
{+ 1}, (x, 5) = g,(s), sont identifiées. Par contre les applications
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e: 7,(X(@) ~{0,1} et e: Z,(X(P) 10,1},
w: Z5(X(0)) = {0,1,2} et w:Z(XPB)—{0,1,2}

différent; nous les notons ci-dessous e, €t eg, W, €t wg.
On a par inspection:

gB;s) —gls) =Y _ ..
(W (X, 2, 1) — Wo (X, 2, 1) &x(50) + (Wg (1,2, 7) = Wa (D, 2, 7)) €,(S0))
Aa, {z,r1(S) .
Il suffit donc de montrer que I’on a
(Wp (X, 2, 1) — Wa (X, 2, 7)) Ex(5,)
+ (Wg(1,2,7) — Wo (1, 2, 7)) €, (s0) = 0

pour tout r dans X — {x, y, z}.

Pour cela on écrit
w(—,z,r)=e(—,re(z,r)+e(zre(z —-)+ (1 —e(xr)ek —)elr, —)
et ’on fait les observations suivantes:

— Les enlacements e, (—, ) ef eg(—, r) coincident.

— En considérant la relation d’intersection (3.1) a la fois pour a et 3, on
obtient

e (2, X) €x(80) + €a(2,7)8,(50) = ep(2, X) &x(Se) + €p(2,)) €, (Sa) -
— De méme en considérant la relation d’intersection (3.2.1) a la fois
pour o et B, on obtient
(1 - eu(z, 7)) €a(z, x) ea(r, x) x(s0) + (1 — ea(z,7)) ea(z,¥) e (r, ) €,(Sa)
= (1 — ep(z, 1) ep(2, X) ep (1, X) £x(52) + (1 — ep(z, 7)) e (2, ¥) ea (r, ¥) £, (50) -

Remarque (suscitée par une discussion avec G. Masbaum). Considérons
pour kK = 1 et 2 les sommes:
ZPE P3(X), w(P) = k la, p(8) .
La démonstration de 4.3.6 montre en fait que ces sommes sont indépendantes
de a si bien que ’on peut poser:
g(k) (a’ S) = ZPE '@3 (X), W(P) =k u‘a,P(S)

et ecrire g(a;s) = guy(0;8) + 280 (a; S).
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La démonstration ci-dessus montre que gy (a; s) et g2 (a; s) sont invariantes
par les mouvements de Reidemeister I et II; par contre elles ne sont pas en
genéral invariantes par III.

D’apres (4.3.5) Pentier g(s) est divisible par 4. En fait:

LEMME 4.3.8. L’entier g(s) est divisible par 8.

Démonstration. Puisque g est nulle sur les sections descendantes il suffit
de montrer que la valeur de g modulo 8 est constante.

Soient s un élément de S et x un élément de X; on choisit @ de telle sorte
que x soit le plus petit élément de X pour Iordre défini par ¢. On a:

ex(s)(g(s) —g(s+x) = 2 L 5 (o WHXI U Q) (e0(s) — £0(s0)) -

Il faut donc vérifier que la somme au second membre, disons G,(s), est
divisible par 4. On pose Q = {y, z} avec y < z; grice & la congruence:

8y (S) €z (S) - 8y (Sa) €z (Sa) = 8y (S) €z (Sa) - 8y (Sa) €z (S) mOd- 4 ’
il vient: G,(s) = H,(s) mod. 4, en posant:
H.(s) = ¥

Cette somme s’écrit ),

W(X, B Z) (gy (S) €z (Sa) - 8y (Sa) €z (S)) .

(r,2)e (X —{x}H2,y<z

(x) & (s) ¢x, , €n posant:

CX,)’: ZZEX—{X,y},z>y W(X,y,Z)gz(Sa)— Z

Comme H, (s,) est nul, H,(s) s’écrit aussi Zy g (g,(5) — &,(54)) Cx, , €t
il suffit finalement de montrer que c,, , est pair, c’est-a-dire:

cex—lryhzey WY 2) 8(Sa) -

ZzeX_{x,y} w(x,y,z) =0 mod. 2.

Cette congruence résulte encore des relations d’intersections du para-
graphe 3 (écrire w(x,,2) = (1 — e(x,»))e(x, 2) e(y,2) + e(x,¥) e(, 2)
+ e(x, y)e(x, 2)).

On note enfin V3 ’application de S dans Z définie par la formule:
(4.3.9) 8V3(s) = X ,. 2,00 WP Vo, p(5) .
Comme au paragraphe 4, on note encore V3: ./ — Z P’invariant des nceuds

associé. Il est clair qu’il s’agit d’un invariant de Vassiliev de degré 3.

PROPOSITION 4.3.10. Soit f: .V — A un invariant de Vassiliev d’ordre
inférieur ou égal a 3. Alors:

FK) = V5 (K)(f(T) + fH)) — Va2 (K) f(H) .
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Si la multiplication par 2 est injective dans A, cette formule peut encore
s’écrire:
f&K) = V&) (f(T) — f(T*)/2) + VoK) (S (T) + f(T%)/2)

(les éléments de A, f(T) — f(T*) et f(T)+ f(T*), sont uniquement
divisibles par 2).

Démonstration. La proposition 1.5 (b) et la proposition 2.5 donnent:

PROPOSITION 4.3.11. Soit P une partie a trois éléments de X. On a:

(Ap f)(s) = w(P)ep(s) (f(T) + f(H)) .

Il en résulte que Pinvariant K — f(K) — V5 (K) (f(T) + f(H)) est de degré
inférieur ou égal a 2. On applique alors 4.2.9. Pour conclure il suffit de savoir
que V;(T) vaut 1 ce qu’on vérifie par exemple avec le diagramme de la
figure 1 (la somme au second membre de (4.3.9) ne contient dans ce cas qu’un
terme).

COMMENTAIRES

Soit Jx (¢) le polyndme de Jones d’un noeud K [Jo] (rappelons que Jx (¢)
appartient a Z[¢, = !]); on considére dans Q[[«]] la série formelle:

JK(e“) =1 +]1(K)u +j2(K)u2 +j3(K)u3 + ... .

Birman et Lin, et Bar-Natan, ont montré que le coefficient j, est un
invariant de Vassiliev de degré inférieur ou égal a » [BL] [Ba]; 1’égalité
Jx* (1) = Jx(£~1) se traduit par le fait que j, est pair si » est pair et impair
si n est impair. La proposition 4.3.10 donne (rappelons que l’on a
Jr(t) =t + t3 — %)

Jr(e¥)=1-3V,(K)u? — 6V;(K)u®* mod. u*,
ou encore
Jk(@)=1=3V,K)(t—-1%+3(V(K) —2V5(K)) (- 1)} mod. (t— D4,
ou enfin

J@M) == 6Vy(K); TP = 18(V2(K) — 2V5(K)) .
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