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290 J.-L. LODAY

10. HOMOLOGIE NON COMMUTATIVE DES GROUPES ET K-THEORIE DES CORPS

10.1. Théorie HL pour les groupes. 1l semble tout a fait raisonnable de
penser qu’il existe une théorie HL pour la catégorie des groupes.

Voici quelques-unes des propriétés que ’on peut espérer des groupes
abéliens HL,(G) lorsque G est un groupe.

(a) HLy(G)=1Z, HL,(G) = G/[G, G].
(b) 1l existe une application naturelle
¢©:HL,(G) > H,(G), n>0.

(c) Si G est abélien HL,(Gq) = (Go)®" et ’application ¢ est le passage
au quotient

(Go)®" = A"(Gyg) .

(d) Pour deux groupes G et G’ on a un isomorphisme d’espaces vectoriels
gradués

HL«(G X G")o = HL+(G)q* HL+(G")q

ou * est ’opération décrite en 6.7.

(e) Pour tout anneau A il existe un groupe abélien gradué KL, (A4) tel que
HL4(GL(A))q) = T(KLx(A)q) -
(f) Pour tout corps F on a
KL,(F) = HL,(SL(F)) = F* A F* .

Il est aussi raisonnable de conjecturer I’existence d’une transformation
naturelle KL, — K, (= K-théorie algébrique) induisant un diagramme
commutatif

HL.«(GL(A))q — Hx«(GL(A))q
I I
T(KL«(A)q) — A(K«(A)o) .
Remarquons que, rationnellement, la théorie KL serait complétement déter-
minée par la théorie HL. Cette théorie KL devrait €tre reliée aux conjectures

de Lichtenbaum et Beilinson concernant le calcul de K (F)q, ou F est un
corps, de la maniére suivante.
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10.2. Les complexes T. Lichtenbaum et Beilinson conjecturent 1’exis-
tence, pour tout corps commutatif F, d’un complexe de groupes abéliens
I'=(n) de longueur n — 1:

Lr(n)y 2 Tp(n)y— -0 I'r(n),
tel que
K,(F)o= @ Hi(r(n)e-

p=n—-i+1

Pour n = 1 on prend I'»(1); = F*, d’o0 K| (F)q = (F*)q. Pour n = 2 Bloch
a construit un complexe

FF(Z):ﬁz(ﬂﬂFXAFX, [Xx]P (1 =x)AXx

ol %,(F) est le groupe abélien libre sur F* — {1}, modulo I’équation
fonctionnelle du dilogarithme

— 1 —
- ] 5] -
x(1-y) 1 -y

Pour n = 3 un complexe I'r(3) a été proposé par A. Goncharov [Go].

10.3. Comparaison avec le cas additif. Comparons ces conjectures avec
le probléme analogue ou ’on a remplacé le groupe linéaire (d’un corps) par
I’algebre de Lie des matrices (d’une algébre associative lisse). 11 faut alors
remplacer la K-théorie algébrique par I’homologie cyclique (car ration-
nellement H,(gl(4)) = A(HC«_1(A4)), cf. [L-Q]). L’analogue additif de
I'r(n) est alors le complexe de de Rham tronqué

+ 2 ~1 4 d ~n-1
I',(n):A—->Q,—=>---—=>Q, .
Autrement dit, rationnellement on a un isomorphisme
HC, 1(A) = Q47'/dQ%* @ Hy (A) @ HY P (A) @ -

Cette décomposition de ’homologie cyclique est la décomposition induite par

les A-opérations (c¢f. [L1]). C’est aussi ce que suppose la conjecture ci-dessus
reliant K et ’homologie de T.

Dans ce contexte ’homomorphisme composé
HH, (A)= Q% '»H,_ (Tl(n) SHC,_(A),

qui est I’application naturelle de ’homologie de Hochschild dans I’homologie
cyclique, n’est autre que la restriction aux parties primitives de

¢: HL,(gl(4)) = H,(gl(A)) .
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Il est donc naturel de penser que, dans le contexte multiplicatif (i.e. GL),

le bon groupe T'rp(n) est KL,(F).

11. INTEGRER LES ALGEBRES DE LEIBNIZ

Le probleme consiste a définir des objets algébriques qui seraient aux
algebres de Leibniz ce que les groupes sont aux algébres de Lie. Ces objets
mythiques seront appelés, pour l’instant, des coquecigrues. Une coque-
cigrue G devrait étre munie d’un «commutateur abstraity [—, —]:
G X G — G ayant certaines des propriétés des commutateurs dans les groupes.
Les groupes seraient des cas particuliers de coquecigrues et toute coquecigrue
aurait un groupe universel associé G,,;. Les théories d’homologie HL, et de
cohomologie HL* devraient s’étendre a la catégorie des coquecigrues et le
groupe HL?*(G, A) classifierait les extensions, dans la catégorie des
coquecigrues, de G par A. En particulier il devrait y avoir au-dessus de
SL, (F) une coquecigrue universelle fournissant une extension de SL, (F) par
F* A F* pour n = 5.

L’une des relations attendues entre coquecigrues et algébres de Leibniz est
la suivante. Les commutateurs abstraits définissent une série centrale
descendante dont le gradué associé est une algebre de Leibniz (le crochet étant
induit par le commutateur abstrait). Une coquecigrue libre doit donner une
algébre de Leibniz libre.

La catégorie homotopique des coquecigrues simpliciales devrait fournir un
modele entier de la théorie de ’homotopie non commutative décrite en 8.3.

Une coquecigrue munie d’une structure de variété (avec quelques
compatibilités) serait un groupe de Leibniz, c’est-a-dire que 1’espace tangent
aurait une structure d’algebre de Leibniz (on peut réver).
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