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288 J.-L. LODAY

de ’homotopie rationnelle «non commutative». Ceci améne immédiatement
un certain nombre de questions naturelles: existence de modéles minimaux,
analogue non commutatif des cogébres cocommutatives, analogue des groupes
simpliciaux (cf. 10 et 11), etc.

9. HOMOLOGIE NON COMMUTATIVE DES ALGEBRES ASSOCIATIVES

Soit A une algébre associative unitaire sur k. On suppose que K
contient Q. Les énoncés et conjectures qui suivent peuvent s’exprimer en
utilisant comme coefficients un A-bimodule M, mais, pour simplifier, on
prendra ici M = A.

9.1. Rappel du cas classique (cf. par exemple [L1]). Le complexe de
Hochschild (Cy, b), ou C, = A ® A®", d’homologie HH,(A), possede les
propriétés suivantes. Pour tout A les idempotents eulériens permettent de
-~ scinder C, en

C,=CVPeCc?P®..eoCcw".

(9.1.1) Si A est commutative, C{’ est un sous-complexe de Cy, et son
homologie n’est autre que ’homologie de Harrison-André-Quillen.

(9.1.2) Si A est commutative et lisse sur k, alors HH'"(4) = 0 pour
n>1et HH{"(4) = Q),,. Pour I’homologie de Hochschild on a alors le
théoréme de Hochschild-Kostant-Rosenberg:

HH.(A) = A (HY (A)) = Q%
ou Q7 ., désigne le module des n-formes différentielles de Kachler.
(9.1.3) Le module C est isomorphe 4 A ® A"A (M ® A"A dans la

version bimodule), et la restriction du bord de Hochschild b & C% aboutit

dans C"~". On a alors un diagramme commutatif:

b
CE,”) - cr-1

n—1

I I

AQAA > AQA" A,
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dans lequel d est le bord de Chevalley-Eilenberg (cf. 6.6) pour la structure
d’algebre de Lie de A donnée par [x, y] = xy — yx.

9.2. Conjecture pour le cas non commutatif. On conjecture qu’il existe
un complexe CLy = (CL«(A), b), et donc des groupes d’homologie HL«(A),
ayant les propriétés suivantes.

(9.2.0) 1l existe une application naturelle non triviale

w: HL.(A) > HH«(A) .

(9.2.1) Pour tout n le module CL, admet une décomposition
CL,=CLY®cLP®..®cL?.

Le complexe CLY’ est un sous-complexe de CL,, et son homologie est
précisément 1’homologie de Hochschild HH,(A) pour n > 1.

(9.2.2) Si I’algebre associative et unitaire A4 est quasi-libre au sens de
Cuntz-Quillen (c¢f. [C-Q]), on sait que HH,(A) =0 pour n > 1, et que
HH (A) = A® (A/k). Adoptons les notations de Cuntz et Quillen:
QA := AR (A/k)®" (n-formes différentielles non commutatives sur A).
La théorie HL devrait vérifier

HL,(A) = T,(HY(4)) = Q4 .

(9.2.3) La composante CLE{’) devrait étre isomorphe a 4 ® A®" (plus
précisément M & A®" dans la version bimodule), et on devrait avoir un
diagramme commutatif

cL > Loy
[ v I
A@A@n _d) A®A®”‘1,
ou d est le bord de Leibniz pour la structure de Leibniz de A donnée par

[x, y] = xy — yx.

9.3. Remarque. 1ly afort a penser que les groupes HL(A) sont en fait
définis sur une catégorie plus large que celle des algébres associatives unitaires.
De méme qu’une algébre associative définit une algébre de Lie, tout objet de
cette catégorie devrait définir une algébre de Leibniz.
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