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288 J.-L. LODAY

de Phomotopie rationnelle «non commutative». Ceci amène immédiatement

un certain nombre de questions naturelles: existence de modèles minimaux,
analogue non commutatif des cogèbres cocommutatives, analogue des groupes
simpliciaux {cf. 10 et 11), etc.

9. Homologie non commutative des algèbres associatives

Soit A une algèbre associative unitaire sur k. On suppose que k
contient Q. Les énoncés et conjectures qui suivent peuvent s'exprimer en

utilisant comme coefficients un A-bimodule M, mais, pour simplifier, on
prendra ici M A.

9.1. Rappel du cas classique {cf. par exemple [Ll]). Le complexe de

Hochschild (C*, b), où Cn A (x) A ®n, d'homologie HHn{A), possède les

propriétés suivantes. Pour tout A les idempotents eulériens permettent de

scinder Cn en

C„ C<0 © C<„2) © ©

(9.1.1) Si A est commutative, C*1' est un sous-complexe de C*, et son

homologie n'est autre que l'homologie de Harrison-André-Quillen.

(9.1.2) Si A est commutative et lisse sur k, alors HH^\A) 0 pour
n > 1 et HH\l){A) &lA/k. Pour l'homologie de Hochschild on a alors le

théorème de Hochschild-Kostant-Rosenberg:

HH,.(A) A a{H^(AQ*/k

où QA/k désigne le module des /z-formes différentielles de Kaehler.

(9.1.2) Le module est isomorphe à A (x) AnA (M (x) A"A dans la
version bimodule), et la restriction du bord de Hochschild b à aboutit
dans C{f~j1}. On a alors un diagramme commutatif:

r^{n) /-i{n -1)^ n n — l

II1 II1

A ® AM A®An~lA,
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dans lequel d est le bord de Chevalley-Eilenberg {cf. 6.6) pour la structure

d'algèbre de Lie de A donnée par [x3 y] xy - yx.

9.2. Conjecture pour le cas non commutatif. On conjecture qu'il existe

un complexe CL* (CL*(A), b), et donc des groupes d'homologie HL*(A),
ayant les propriétés suivantes.

(9.2.0) Il existe une application naturelle non triviale

p: HL*(A) -+ HH*{A)

(9.2.1) Pour tout n le module CLn admet une décomposition

CLn CL[l) © CLt2)© © CL[n)

Le complexe CL*' est un sous-complexe de CL*, et son homologie est

précisément Phomologie de Hochschild HHn(A) pour n ^ L

(9.2.2) Si l'algèbre associative et unitaire A est quasi-libre au sens de

Cuntz-Quillen {cf. [C-Q]), on sait que HHn{A) 0 pour n > 1, et que

HHi{A) A (x) {A/k). Adoptons les notations de Cuntz et Quillen:
QM := A (x) {A/k)®n («-formes différentielles non commutatives sur A).
La théorie HL devrait vérifier

HLM) Ta(H(1\A)) Q"A

(9.2.3) La composante CL^ devrait être isomorphe à A (x) A -" (plus
précisément M ® A®n dans la version bimodule), et on devrait avoir un
diagramme commutatif

CL[n) L CL(Ml)

l II l

A <S>A®"A©
où d est le bord de Leibniz pour la structure de Leibniz de A donnée par
[x,y] xy - yx.

9.3. Remarque. Il y a fort à penser que les groupes (A) sont en fait
définis sur une catégorie plus large que celle des algèbres associatives unitaires.
De même qu'une algèbre associative définit une algèbre de Lie, tout objet de
cette catégorie devrait définir une algèbre de Leibniz.
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