Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: GÈBRES

Autor: Serre, Jean-Pierre

Kapitel: Commentaires du rédacteur

DOI: https://doi.org/10.5169/seals-60413

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

COMMENTAIRES DU RÉDACTEUR

Soit Γ un groupe. Se donner une structure de schéma en groupes affine sur Γ (ou, plus correctement, définir une «enveloppe» algébrique de Γ) revient à se donner:

- soit une bigèbre C de fonctions sur Γ , de sorte que le schéma en groupes en question soit $\operatorname{Spec}(C)$;
- soit une sous-catégorie de la catégorie des représentations linéaires de Γ (cette sous-catégorie étant stable par sous-trucs, quotients, sommes directes, produits tensoriels, ...).

Ainsi, la structure algébrique réelle (resp. complexe) d'un groupe de Lie compact (resp. réductif complexe) correspond à la catégorie des représentations analytiques réelles (resp. complexes) du groupe; sa bigèbre est formée des «coefficients de représentations» qui sont analytiques réels (resp. complexes).

Le but de la rédaction est d'expliquer cette correspondance entre bigèbres et catégories de représentations. Il y a intérêt à traiter d'abord le cas, plus simple, des cogèbres (cela revient à laisser tomber le produit tensoriel des représentations). C'est ce qui est fait dans les §§1 et 2. Les §§3 et 4 sont consacrés aux bigèbres, et le §5 aux applications aux groupes compacts et complexes.

AVERTISSEMENTS

- 1. Il s'agit, non d'un projet de chapitre, mais d'une rédaction à usage interne, pour l'édification de BOURBAKI (ou, en tout cas, du rédacteur). On y utilise librement les notions élémentaires sur les catégories abéliennes et les schémas affines. Certains morceaux devraient quand même être utilisables dans le livre de LIE.
- 2. Le rédacteur a fait beaucoup d'efforts pour distinguer sa droite de sa gauche. Il n'est pas certain d'y être toujours parvenu.

NOTATIONS

Dans les $\S\S1$ à 4, la lettre K désigne un anneau commutatif. A partir du $\S2$, on suppose (sauf mention expresse du contraire) que c'est un corps.

Toutes les algèbres, cogèbres, bigèbres, tous les comodules, modules, etc. sont sur K. Même chose pour les produits tensoriels. On écrit $\operatorname{Hom}(V, W)$ et $V \otimes W$ au lieu de $\operatorname{Hom}_K(V, W)$ et $V \otimes_K W$. Le dual d'un module V est noté V'.

On note Alg_K la catégorie des anneaux commutatifs K_1 munis d'un morphisme $K \to K_1$.

L'application identique d'un ensemble X est notée 1_X (ou simplement 1 si aucune confusion sur X n'est à craindre).

§1. COGÈBRES ET COMODULES (GÉNÉRALITÉS)

1.1. COGÈBRES

Dans tout ce paragraphe, C désigne une cogèbre, de coproduit d, possédant une co-unité (à droite et à gauche) e. Rappelons (cf. Alg. III) ce que cela signifie:

C est un module (sur K);

d est une application linéaire de C dans $C \otimes C$;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

- (C₁) (Coassociativité) Les applications linéaires $(1_C \otimes d) \circ d$ et $(d \otimes 1_C) \circ d$ de C dans $C \otimes C \otimes C$ coïncident.
- (C₂) (Co-unité) $(1_C \otimes e) \circ d = 1_C$ et $(e \otimes 1_C) \circ d = 1_C$.

Exemples

- (1) Soit C une cogèbre de co-unité e. En composant le coproduit de C avec la symétrie canonique de $C \otimes C$, on obtient une seconde structure de cogèbre sur C, dite opposée de la première. On la note C^o ; la co-unité de C^o est e.
- (2) Toute somme directe de cogèbres a une structure naturelle de cogèbre. En particulier, 0 est une cogèbre.
- (3) Supposons que C soit projectif de type fini (comme K-module), et soit A son dual. Comme le dual de $C \otimes C$ s'identifie à $A \otimes A$, toute structure de cogèbre sur C correspond à une structure d'algèbre associative sur A, et réciproquement. Pour que $e \in A$ soit co-unité de C, il faut et il suffit que ce soit un élément unité (à gauche et à droite) pour A.

(Lorsque K est un corps, on verra plus loin que toute cogèbre est limite inductive de cogèbres obtenues par ce procédé.)

(4) Soit V un module projectif de type fini. Soit

$$C = \operatorname{End}(V) = V \otimes V'$$
.