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GEBRES 35
COMMENTAIRES DU REDACTEUR

Soit I" un groupe. Se donner une structure de schéma en groupes affine sur
T (ou, plus correctement, définir une «enveloppe» algébrique de I') revient a
se donner:

— soit une bigebre C de fonctions sur I', de sorte que le schéma en groupes
en question soit Spec(C);

— soit une sous-catégorie de la catégorie des représentations linéaires de I
(cette sous-catégorie étant stable par sous-trucs, quotients, sommes
directes, produits tensoriels, ...).

Ainsi, la structure algébrique réelle (resp. complexe) d’un groupe de Lie
compact (resp. réductif complexe) correspond a la catégorie des représen-
tations analytiques réelles (resp. complexes) du groupe; sa bigébre est formée
des «coefficients de représentations» qui sont analytiques réels (resp.
complexes).

Le but de la rédaction est d’expliquer cette correspondance entre bigebres
et catégories de représentations. 11 y a intérét a traiter d’abord le cas, plus
simple, des cogébres (cela revient a laisser tomber le produit tensoriel des
représentations). C’est ce qui est fait dans les §§1 et 2. Les §§3 et 4 sont
consacrés aux bigebres, et le §5 aux applications aux groupes compacts et
complexes.

AVERTISSEMENTS

1. 1I s’agit, non d’un projet de chapitre, mais d’une rédaction 4 usage
interne, pour 1’édification de BOURBAKI (ou, en tout cas, du rédacteur). On
y utilise librement les notions élémentaires sur les catégories abéliennes et les
schémas affines. Certains morceaux devraient quand méme étre utilisables
dans le livre de LIE.

2. Le rédacteur a fait beaucoup d’efforts pour distinguer sa droite de sa
gauche. Il n’est pas certain d’y étre toujours parvenu.

NOTATIONS

Dans les §§1 a 4, la lettre K désigne un anneau commutatif. A partir du
§2, on suppose (sauf mention expresse du contraire) que c’est un Corps.

Toutes les algebres, cogébres, bigébres, tous les comodules, modules, etc.
sont sur K. M&me chose pour les produits tensoriels. On écrit Hom (V, W) et

V® W au lieu de Homg(V, W) et V ®x W. Le dual d’un module V est
noté V.
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On note Algyx la catégorie des anneaux commutatifs X; munis d’un
morphisme K — K.

L’application identique d’un ensemble X est notée 15 (ou simplement 1 si
aucune confusion sur X n’est a craindre).

§1. COGEBRES ET COMODULES (GENERALITES)

1.1. COGEBRES

Dans tout ce paragraphe, C désigne une cogébre, de coproduit d, possédant
une co-unité (4 droite et a gauche) e. Rappelons (cf. Alg. III) ce que cela
signifie:

C est un module (sur K);

d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(C1) (Coassociativité) Les applications linéaires (1o®d)od et
d®1c)od de C dans C ® C Q C coincident.

() (Co-unité) (Ic®e)od=1cet (e®Qlp)od = 1.

Exemples

(1) Soit Cune cogebre de co-unité e. En composant le coproduit de C avec
la symétrie canonique de C & C, on obtient une seconde structure de cogebre
sur C, dite opposée de la premiere. On la note C?; la co-unité de C? est e.

(2) Toute somme directe de cogébres a une structure naturelle de cogébre.
En particulier, 0 est une cogebre. ’

(3) Supposons que C soit projectif de type fini (comme K-module), et
soit A son dual. Comme le dual de C ® C s’identifie 8 A X A, toute structure
de cogébre sur C correspond a une structure d’algebre associative sur A, et
réciproquement. Pour que e € A soit co-unité de C, il faut et il suffit que ce
soit un élément unité (& gauche et a droite) pour A.

(Lorsque K est un corps, on verra plus loin que toute cogébre est limite
inductive de cogébres obtenues par ce procédé.)

(4) Soit ¥ un module projectif de type fini. Soit
C=End()=VR V.
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