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8. Liens avec la topologie algébrique

8.1. Modèle de James de QSBG (d'après J. Lodder [Lo]). Soit G un

groupe discret, BG son classifiant topologique, S2BG la double suspension
réduite d'icelui et enfin QSBG l'espace de lacets de cette suspension. Il
est bien connu que l'homologie de ce dernier espace se calcule grâce à

l'isomorphisme

(8.1.1) H*(QS2BG) T(H* _ (G))

où H* désigne l'homologie réduite (.H0 0, Ht Ht pour i > 0). D'autre
part l'homologie de Hochschild de l'algèbre de groupe k[G] se compare à

H*(G) grâce à l'existence d'une surjection naturelle

HH* _ i (k [G]) -»//*_! (G, k)

En prenant le module tensoriel de cette application et en utilisant les

isomorphismes (7.4.1) et (8.1.1) on obtient une surjection

HL*(gl(k[G})) ^>H*(QS2BG9 k)

Dans [Lo], J. Lodder a montré que l'on pouvait relever très explicitement cette

application au niveau des complexes de chaînes, à condition de remplacer
QSBG par son modèle de James

J(BG) H (BG)n/~
n

Dans cette interprétation chacun des complexes de chaînes se scinde en une

somme de sous-complexes. Le /-ième sous-complexe se présente comme le

complexe total d'un module /-simplicial et son homologie est précisément la

composante P.
Comme sous-produit de ce travail J. Lodder obtient une simplification de

la démonstration originale de l'isomorphisme (7.4.1).

8.2. Homologie des modules simpliciaux-symétriques. Il existe une
catégorie A S (cf. [F-L]) qui contient à la fois les morphismes de la catégorie simpli-
ciale À et les éléments des groupes symétriques Sn+1 AutAS[«]). Il existe

aussi un foncteur Àop -> ÄS9 qui est injectif sur l'ensemble des morphismes
de Aop. Les images des dégénérescences et des faces par ce foncteur sont:

'Sj ôy + 1 pour j 0,..., n - 1

< di 0/ pour i 0,..., n - 1

dn ^ OqCq où Co est le cycle (0 1 n) e Sn +1

cf. [Ll], §6.1.11.
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A tout foncteur M*. AS ~> (k — Mod) on peut associer un complexe de

Leibniz (M*, d) en posant

(8.2.1) d: £ (-lV'+1tf/(cLi - ci) +£ (-
0 <i<j 0 <j^n

où dt est la z-ième face décrite ci-dessus et c\ est le cycle (z z + 1 ...y) e Sn +1

AutA5 [n],
La relation d2 0 est une conséquence des relations, dans AS, entre les

morphismes de À et les éléments des groupes symétriques (cf. par exemple

[Ll], §E.6.1.7). On note HL*(M) l'homologie du complexe (M*, d).
Voici un exemple de module simplicial-symétrique. Soit A une algèbre

associative unitaire sur k. Le foncteur C(A): AS - (k - Mod) est défini par

[n] t-> A ®n +1 et

'

Si(a0,...9an) (flo,an) pour i 0,...,n + 1

- Gj(a0, (a0, ...,ajaj+1, pour y 0- 1

c|+1(a0, ...,an) (a0, ...,ai^uai+uai)ai+2) ...,an) pour z 0, ...,n - 1

On vérifie aisément que le complexe (C(A), d) est précisément le complexe de

Leibniz de A considérée comme une algèbre de Leibniz (en faifde Lie) pour
le crochet usuel [a, b\ ab - ba.

Un autre exemple est donné par le foncteur [n] &[£„ +1] (x) A +1

issu de la démonstration de l'isomorphisme (7.4.1).
En fait on n'a pas besoin de toute la catégorie AS pour définir (M*, d).

Il suffit de se limiter à la sous-catégorie AopS' décrite dans [Ll] p. 220.

Remarque. Il est naturel de s'interroger sur le rapport entre cette

généralisation non-commutative et la théorie quantique. Ces deux
généralisations sont orthogonales, mais on peut les réunifier en construisant des théories

de type Hochschild et de type Leibniz pour certains modules simpliciaux
tressés. On utilise alors la catégorie AB (cf. [F-L]) faite à partir de A et des

groupes de tresses. En particulier on peut appliquer ces théories au
foncteur [n]^> A®n + l, lorsque l'algèbre A est munie d'une matrice de

Yang-Baxter R: A 0 A -> A 0 A, satisfaisant certaines propriétés.

8.3. Homotopie rationnelle non-commutative. La catégorie homo-
topique des CIL-complexes simplement connexes est, rationnellement,
équivalente à la catégorie homotopique des Q-algèbres de Lie différentielles
graduées réduites. Il est alors naturel de considérer la catégorie homotopique
des Q-algèbres de Leibniz différentielles graduées réduites comme une théorie
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de Phomotopie rationnelle «non commutative». Ceci amène immédiatement

un certain nombre de questions naturelles: existence de modèles minimaux,
analogue non commutatif des cogèbres cocommutatives, analogue des groupes
simpliciaux {cf. 10 et 11), etc.

9. Homologie non commutative des algèbres associatives

Soit A une algèbre associative unitaire sur k. On suppose que k
contient Q. Les énoncés et conjectures qui suivent peuvent s'exprimer en

utilisant comme coefficients un A-bimodule M, mais, pour simplifier, on
prendra ici M A.

9.1. Rappel du cas classique {cf. par exemple [Ll]). Le complexe de

Hochschild (C*, b), où Cn A (x) A ®n, d'homologie HHn{A), possède les

propriétés suivantes. Pour tout A les idempotents eulériens permettent de

scinder Cn en

C„ C<0 © C<„2) © ©

(9.1.1) Si A est commutative, C*1' est un sous-complexe de C*, et son

homologie n'est autre que l'homologie de Harrison-André-Quillen.

(9.1.2) Si A est commutative et lisse sur k, alors HH^\A) 0 pour
n > 1 et HH\l){A) &lA/k. Pour l'homologie de Hochschild on a alors le

théorème de Hochschild-Kostant-Rosenberg:

HH,.(A) A a{H^(AQ*/k

où QA/k désigne le module des /z-formes différentielles de Kaehler.

(9.1.2) Le module est isomorphe à A (x) AnA (M (x) A"A dans la
version bimodule), et la restriction du bord de Hochschild b à aboutit
dans C{f~j1}. On a alors un diagramme commutatif:

r^{n) /-i{n -1)^ n n — l

II1 II1

A ® AM A®An~lA,
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