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Il est clair que pour toute algébre de Leibniz g le noyau g%"" (¢f. 2.1) est une
représentation de 1’algébre de Leibniz g;;,. C’est une représentation
antisymétrique.

Une représentation M de g est dite triviale si elle est a la fois symétrique
et antisymétrique, c’est-a-dire

[x, m] =0 =[m,x] pourtout meM,x€eg.

4.4. Coreprésentations. Dans I’analogie avec les algébres associatives,
les représentations sont 1’analogue des modules a droite (voir ci-dessous
thm 5.2). La notion duale, c’est-a-dire 1’analogue des modules a gauche, est
celle de coreprésentation.

Par définition une coreprésentation N de 'algébre de Leibniz g est la

donnée dun k-module et de deux actions [—,-]:gX N> N et
[—, —1: N x g — N vérifiant les axiomes suivants

(MLL)' [[x, ¥1, m] = [x, [y, m]] — [y, [x, m]]

(LML)’ [[y, [m, x]] = [y, m],x] = [m, [x, 1]

(LLM)’ [[m: X],y] = [m, [X, y]] - [[y) m],X] ’

pour tout m € N et tout x, y € g.
Notons que les deux derniéres relations impliquent la relation

(ZD)’ [y, Im, x]] + [[m, x],y] =0.

I1 est clair que toute représentation d’une algébre de Lie définit a la fois une
représentation et une coreprésentation au sens des algébres de Leibniz.

Le produit tensoriel d’une coreprésentation N et d’une représentation M
est le quotient de N ® , M par les relations

[, x] ®m~n®[x,m] e [x,n]&®m~n [m,x]

pour tout x € g, n € N et m € M.

5. ALGEBRE ENVELOPPANTE (cf. [L-P]).

La catégorie des représentations d’une algebre de Leibniz donnée ¢ est une
catégorie abéliennne. Il est naturel d’essayer de la représenter comme une

catégorie de modules sur une certaine algebre, appelée algébre enveloppante
de g.
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On construit cette algebre enveloppante de la fagon suivante. Considérons
deux copies de g notées g’/ et g” pour les différencier. Les éléments de g’ sont
notés /., ceux de ¢” sont notés r,, pour tout x € ¢. Rappelons que pour tout
k-module V, T(V) désigne 1’algébre tensorielle k @ V@ VO2 @ ..., qui est
associative et unitaire. Dans 7(g’@® ¢g”) on considére I’idéal bilatére 7
engendré par les éléments

(1) r[x,y]_(rxry'"ryrx)
(i) Ly — Uery — 1yly)
() (r, + 1)1

pour tout x, y € g.

5.1. Par définition ’algébre enveloppante UL (g) de I’algébre de Leibniz
g est le quotient

UL(g) := T(g'®g")/1.

5.2. THEOREME (c¢f. [L-P]). La catégorie des représentations (resp.
coreprésentations) de l’algébre de Leibniz ( est équivalente a la catégorie
des modules a droite (resp. a gauche) sur UL(g).

Il existe plusieurs homomorphismes permettant de comparer UL(g) a
I’algébre enveloppante, au sens des algebres de Lie, de g;,.. Tout d’abord les
homomorphismes d’algebres dy, d,: UL(g) = U(g,,.) induits par

do(lx) =0 di(ly) = —x

do(’"x)"—‘)z CZI(")C):)Z
sont bien définis, puis, dans DPautre sens, I’homomorphisme
So: U(8 1) = UL(g), induit par so(X) = r,.

5.3. PROPOSITION (c¢f. [L-Pl). Les homomorphismes d,, d,, sy
ci-dessus vérifient

doSo = d]So = id et (Ker dl) (Ker do) =0.

5.4. Exemple. Soit V = k.x un module libre de rang 1 sur £ engendré
par x. L’algébre de Leibniz libre <Z(V) est isomorphe a k.x® k. x2
@ PDPk.x"® --- équipé du crochet

[x, xi] = xi+1
[x/,x']=0 sij>1.

Notons que Z(V)rj est ’algébre de Lie libre sur un générateur, i.e. iso-
morphe a k. x (I’application quotient envoie x/ sur 0, pour j > 1). L’algébre
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enveloppante (au sens Lie) de Z(V)rie = k.x est lalgébre de poly-
nomes k[x].

I’algébre enveloppante (au sens Leibniz) de ZL(V) est isomorphe a
I’algébre quotient de polyndmes non commutatifs k{(x, y)/{xy = 0}. (Poser

r.+ 1. =x,1,= —y). Les applications do, d; et so sont données par
do(x) = x {a’l(x) =0
do(¥) =0 di(y)=x

et so(x) =x + .

5.5. Poincaré-Birkhoff-Witt. On peut faire un traitement de UL en tous
points analogue a celui de U: filtration, théoreme de PBW, algebre
enveloppante d’un produit, etc. (¢f. [L-P] pour PBW).

6. COHOMOLOGIE ET HOMOLOGIE D’UNE ALGEBRE DE LEIBNIZ
(cf. [L1], [C], [L-P])

Historiquement la notion d’algébre de Leibniz est apparue de la fagon
suivante. On sait que le calcul de ’homologie (a coefficients triviaux) d’une
algébre de Lie g peut se faire a partir d’un complexe (de Chevalley-Eilenberg)
dont ’espace des n-chaines est A" (produit extérieur n fois). J’ai montré,
premiérement, que ’on pouvait relever ’opérateur bord d: A"g > A"~ !g en
un opérateur bord d: g®" — g®7-1, et, deuxiémement, que la démonstration
de d? = 0 n’utilise que I’identité de Leibniz du crochet. Moralité: le nouveau
complexe est encore bien défini pour n’importe quelle algébre de Leibniz.

En fait on va voir que I’on peut définir plus généralement des groupes
d’homologie d’une algebre de Leibniz a coefficients dans une coreprésentation
et des groupes de cohomologie a valeurs dans une représentation. Ces groupes
peuvent s’interpréter en termes de foncteurs dérivés (Tor et Ext respectivement)
grace a l’algebre enveloppante UL (g).

6.1. Cohomologie d’une algébre de Leibniz. Soit ¢ une algébre de

Leibniz et M une représentation de g. Le n-iéme module des cochaines de g
a valeurs dans M est

C"(Q,M) = Homk(g®nsM)an = 0.
On définit un opérateur d: C"(g, M) = C"+1(g, M) par
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